PaleoWood: A machine learning approach for determining the affinity of Paleozoic gymnosperm woods

裸子植物 古生代 亲缘关系 冈瓦纳大陆 古生物学 大型化石 古植物学 木质部 地质学 生物 进化生物学 植物 生物化学 植物发育 构造盆地 基因 全新世
作者
Domingas Maria da Conceição,Mário G.F. Esperança Júnior,Roberto Iannuzzi,Mariana Recamonde‐Mendoza,Guilherme B.B.O. Malta
出处
期刊:Journal of South American Earth Sciences [Elsevier BV]
卷期号:121: 104125-104125 被引量:3
标识
DOI:10.1016/j.jsames.2022.104125
摘要

Fossil plant remains are commonly found in fragments in the sediment, thus complicating the reconstruction and classification of fossil plants into a higher taxonomic group. Particularly for stem anatomy, some described features repeat among the proposed lineages due to environmental pressures that induce anatomical convergence. Other characteristics cannot always be seen because of the fossil's state of preservation, as often happens with the bark and the arrangement of axes and leaves. Given these difficulties, we developed PaleoWood, an unprecedented affinity classifier for Paleozoic gymnosperm woods based on 16 variables collected from 42 consistent genera that have the central core, primary xylem, and secondary xylem described. Similarities among samples were analyzed by principal coordinates, and models were trained through logistic regression, linear discriminant, and k-nearest neighbors algorithms. Models' performance was estimated by cross-validation and testing of the affinity of 20 previously known samples. Results agreed with some hypotheses previously discussed in the literature, such as the linkage of Eristophyton, Megaloxylon, and Tetrastichia with Lyginopteridales. Some other predictions were interpreted to be a result of convergent evolution or the models' limitations, especially those predictions relating to the samples of simple protostele or pycnoxylic pteridosperms (but these models are not definitive and may be improved as new data are collected). Therefore, they could assist in future comparisons and discussions about the taxonomy, evolution, and paleobotanical affinities of the basal seed plants, especially for the woods from Gondwana, in which affinities are obscure for several genera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
充电宝应助LRL采纳,获得10
6秒前
王佐之才完成签到,获得积分10
6秒前
朴素采文发布了新的文献求助10
6秒前
8秒前
爆米花应助个性乐儿采纳,获得10
8秒前
9秒前
一叶发布了新的文献求助10
10秒前
aaaaa完成签到 ,获得积分10
12秒前
15秒前
华仔应助yyymmma采纳,获得10
15秒前
16秒前
18秒前
搜集达人应助HUO采纳,获得20
20秒前
缓慢平蓝发布了新的文献求助10
21秒前
环境催化发布了新的文献求助10
21秒前
21秒前
野草发布了新的文献求助10
21秒前
科研通AI5应助qianZhang采纳,获得10
22秒前
22秒前
乐乐应助雪糕刺客采纳,获得10
22秒前
大力翠丝完成签到,获得积分10
22秒前
monere发布了新的文献求助10
23秒前
24秒前
有魅力丝完成签到,获得积分20
24秒前
华仔应助燕小丙采纳,获得10
24秒前
大个应助开心山芙采纳,获得30
25秒前
26秒前
yyymmma发布了新的文献求助10
26秒前
27秒前
EOFG0PW完成签到,获得积分10
27秒前
有魅力丝发布了新的文献求助10
28秒前
28秒前
ha发布了新的文献求助10
29秒前
星落枝头发布了新的文献求助10
29秒前
31秒前
lizhiqian2024发布了新的文献求助10
32秒前
32秒前
asdfg123发布了新的文献求助10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791034
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276743
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761066