Securing Health Care Data through Blockchain enabled Collaborative Machine Learning

块链 医疗保健 计算机科学 计算机安全 数据科学 业务 互联网隐私 政治学 法学
作者
C. U. Om Kumar,G Sudhakaran,Veerasamy Balaji,A. Nhaveen,Sai Balakrishnan S
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-2205379/v1
摘要

Abstract Transferring of data in machine learning from one party to another party is one of the issues that has been in existence since the development of technology. Health care data collection using machine learning techniques can lead to privacy issues which cause disturbances among the parties and reduces the possibility to work with either of the parties. Since centralized way of information transfer between two parties can be limited and risky as they are connected using machine learning, this factor motivated us to use the decentralized way where there is no connection but model transfer between both parties will be in process through a federated way. The purpose of this research is to investigate a model transfer between a user and the client(s) in an organization using federated learning techniques and reward the client(s) for their efforts with tokens accordingly using blockchain technology. In this research the user shares a model to organizations that are willing to volunteer their service to provide help to the user. The model is trained and transferred among the user and the clients in the organizations in a privacy preserving way. In this research we found that the process of model transfer between user and the volunteered organizations works completely fine with the help of federated learning techniques and the client(s) is/are rewarded with tokens for their efforts. We used the Covid 19 dataset to test the federation process, which yielded individual results of 88 percent for contributor a, 85 percent for contributor b, and 74 percent for contributor c. When using the FedAvg algorithm, we were able to achieve a total accuracy of 82 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcy发布了新的文献求助10
1秒前
Steve发布了新的文献求助10
2秒前
wa发布了新的文献求助10
4秒前
7秒前
贪玩的苠发布了新的文献求助20
8秒前
123完成签到,获得积分10
9秒前
hhhhh完成签到,获得积分10
11秒前
zcy完成签到,获得积分10
11秒前
丘比特应助Steve采纳,获得10
12秒前
医学小朋友完成签到,获得积分10
12秒前
鑫搭发布了新的文献求助10
13秒前
14秒前
谨慎灵萱完成签到,获得积分20
16秒前
18秒前
着急的青枫应助鑫搭采纳,获得20
21秒前
Aabaoa完成签到,获得积分10
21秒前
21秒前
谨慎灵萱发布了新的文献求助10
22秒前
wa完成签到 ,获得积分20
24秒前
wu发布了新的文献求助10
24秒前
25秒前
烂漫宝贝完成签到 ,获得积分10
25秒前
贪玩的苠完成签到,获得积分10
27秒前
失眠雨雪完成签到,获得积分10
27秒前
研友_VZG7GZ应助自然的南琴采纳,获得10
29秒前
研友_Z6Qrbn完成签到,获得积分10
29秒前
wu完成签到,获得积分10
32秒前
NexusExplorer应助wang97采纳,获得100
35秒前
外向蜡烛完成签到 ,获得积分10
36秒前
billkin完成签到,获得积分10
37秒前
xuan完成签到,获得积分10
38秒前
整齐的蜻蜓完成签到 ,获得积分10
39秒前
上官若男应助Chloe采纳,获得10
44秒前
44秒前
XL神放完成签到 ,获得积分10
48秒前
自由井完成签到,获得积分10
49秒前
kingwill发布了新的文献求助30
50秒前
DAYDAY发布了新的文献求助10
51秒前
TAOS完成签到 ,获得积分10
52秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777469
求助须知:如何正确求助?哪些是违规求助? 4108782
关于积分的说明 12710414
捐赠科研通 3830598
什么是DOI,文献DOI怎么找? 2112943
邀请新用户注册赠送积分活动 1136641
关于科研通互助平台的介绍 1020628