Multilevel Spatial-Channel Feature Fusion Network for Urban Village Classification by Fusing Satellite and Streetview Images

计算机科学 人工智能 卫星 特征(语言学) 模式识别(心理学) 频道(广播) 特征提取 集合(抽象数据类型) 遥感 地理 物理 天文 计算机网络 语言学 哲学 程序设计语言
作者
Runyu Fan,Jun Li,Fengpeng Li,Wei Han,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:13
标识
DOI:10.1109/tgrs.2022.3208166
摘要

Urban Villages (UV) refer to areas of urban informal settlements lagging behind the rapid urbanization process. Recent studies focus on using satellite images to classify UV. However, satellite images only capture objects from a bird-eye perspective, thus cannot obtain complex spatial relationships between objects. In UV areas, buildings and objects are usually dense, small in size, and obscure each other. Therefore, it is challenging to classify UV accurately using only satellite images with bird-eye perspectives. In this paper, to solve this problem, we proposed a novel method that uses satellite images combined with streetview images to classify UV. Specifically, we propose a novel multilevel spatial-channel feature fusion network, namely FusionMixer, that integrates CNN-based feature extraction modules and a multilevel spatial-channel feature fusing layer to make an optimal UV classification. Experiments were conducted in Shenzhen City (the RsSt-ShenzhenUV dataset) and a public UV dataset (the S2UV dataset). The proposed FusionMixer achieved an increase of OA by 8.83% and 8.84%, and improves Kappa by 0.1765 and 0.1770 in the validation set and testing set, compared to the second-best fusion models in RsSt-ShenzhenUV dataset. Experiments in the S2UV dataset show that the proposed FusionMixer improves OA by 1.82% and Kappa by 0.04 compared to other methods. We also added a set of experiments on a public dataset (Houston dataset) and compare our method with the current state-of-the-art multimodal fusion methods to prove the generalization of the proposed FusionMixer in fusing other multimodality data. These experiments confirmed the superior performance of the proposed FusionMixer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助jgs采纳,获得10
1秒前
6秒前
在水一方应助矢思然采纳,获得10
7秒前
7秒前
10秒前
12秒前
冷傲的迎南完成签到 ,获得积分10
14秒前
17秒前
19秒前
Cecilia发布了新的文献求助10
20秒前
21秒前
AAA咸鱼本鱼完成签到,获得积分20
22秒前
唐咩咩咩发布了新的文献求助10
24秒前
矢思然发布了新的文献求助10
24秒前
乐乐应助李李李李李采纳,获得10
24秒前
S1219关注了科研通微信公众号
27秒前
蜻蜓发布了新的文献求助10
28秒前
雪原白鹿发布了新的文献求助10
29秒前
不远完成签到,获得积分10
30秒前
34秒前
唐咩咩咩完成签到,获得积分10
35秒前
40秒前
41秒前
丁莞完成签到,获得积分10
41秒前
42秒前
S1219发布了新的文献求助10
45秒前
ChaoyongWu完成签到 ,获得积分10
46秒前
mmy完成签到 ,获得积分10
47秒前
49秒前
小黄完成签到,获得积分10
50秒前
多情的舞蹈完成签到,获得积分10
52秒前
53秒前
英姑应助mariawang采纳,获得10
54秒前
蜻蜓完成签到,获得积分10
56秒前
56秒前
张张完成签到,获得积分10
58秒前
CipherSage应助科研通管家采纳,获得10
59秒前
领导范儿应助科研通管家采纳,获得10
59秒前
科研通AI5应助科研通管家采纳,获得10
59秒前
上官若男应助科研通管家采纳,获得10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322019
关于积分的说明 10208579
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878