Health behavior homophily can mitigate the spread of infectious diseases in small-world networks

同性恋 疾病 聚类分析 社交网络(社会语言学) 星团(航天器) 传染病(医学专业) 计算机科学 心理学 社会心理学 医学 计算机网络 人工智能 万维网 病理 社会化媒体
作者
Hendrik Nunner,Vincent Buskens,Alexandra Teslya,Mirjam Kretzschmar
出处
期刊:Social Science & Medicine [Elsevier BV]
卷期号:312: 115350-115350 被引量:7
标识
DOI:10.1016/j.socscimed.2022.115350
摘要

Research has repeatedly shown that the spread of infectious diseases is influenced by properties of our social networks. Small-world like structures with densely connected clusters bridged by only a few connections, for example, are not only known to diminish disease spread, but also to increase the chance for a disease to spread to any part of the network. Clusters composed of individuals who show similar reactions to avoid infections (health behavior homophily), however, might change the effect of such clusters on disease spread. To study the combined effect of health behavior homophily and small-world network properties on disease spread, we extend a previously developed ego-centered network formation model and agent-based simulation. Based on more than 80,000 simulated epidemics on generated networks varying in clustering and homophily, as well as diseases varying in severity and infectivity, we predict that the existence of health behavior homophilous clusters reduce the number of infections, lower peak size, and flatten the curve of active cases. That is because agents perceiving higher risks of infections can protect their cluster from infections comparatively quickly by severing only a few bridging ties. A comparison with epidemics in static network structures shows that the incapability to act upon risk perceptions and the low connectivity between clusters in static networks lead to diametrically opposed effects with comparatively large epidemics and prolonged epidemics. These finding suggest that micro-level behavioral adaptation to health risks mitigate macro-level disease spread to an extent that is not captured by static network models of disease spread. Furthermore, this mechanism can be used to design information campaigns targeting proxies for groups with lower risk perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邢文瑞完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
都是发布了新的文献求助10
2秒前
meo完成签到,获得积分10
2秒前
专炸油条完成签到 ,获得积分10
3秒前
1234发布了新的文献求助150
7秒前
无花果应助meo采纳,获得10
7秒前
kjding完成签到,获得积分10
7秒前
8秒前
8秒前
Owen应助简单沛山采纳,获得10
8秒前
沐纾慈关注了科研通微信公众号
8秒前
9秒前
9秒前
10秒前
10秒前
徽白发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
桐桐应助耿教授采纳,获得10
12秒前
srf0602.发布了新的文献求助10
13秒前
8R60d8应助大力日记本采纳,获得10
13秒前
巧克力餐包完成签到 ,获得积分10
13秒前
浅浅浅兮发布了新的文献求助10
13秒前
13秒前
ZeSir发布了新的文献求助10
13秒前
风啸蝉鸣发布了新的文献求助10
14秒前
的的的墨发布了新的文献求助10
14秒前
轻爱发布了新的文献求助10
17秒前
谢123完成签到 ,获得积分10
17秒前
QiwenZhao发布了新的文献求助10
17秒前
18秒前
18秒前
笑点低的咖啡完成签到,获得积分10
18秒前
李健的小迷弟应助ltt采纳,获得10
18秒前
nini发布了新的文献求助10
18秒前
力量发布了新的文献求助10
19秒前
寒酥完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871187
求助须知:如何正确求助?哪些是违规求助? 3413299
关于积分的说明 10683969
捐赠科研通 3137766
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834643
科研通“疑难数据库(出版商)”最低求助积分说明 781250