间充质干细胞
癌症研究
肿瘤微环境
免疫系统
T细胞
免疫疗法
CD8型
癌症免疫疗法
细胞生物学
化学
生物
免疫学
作者
Rui Zhang,Qingxi Liu,Sa Zhou,Hongpeng He,Mingfeng Zhao,Wenjian Ma
标识
DOI:10.1101/2022.09.21.508926
摘要
Abstract Stem cells play critical roles both in the development of cancer and therapy resistance. Although mesenchymal stem cells (MSCs) can actively migrate to tumor sites, their impact on CAR-T immunotherapy has been little addressed. Using an in vitro cell co-culture model including lymphoma cells and macrophages, here we report that the CAR-T cell mediated cytotoxicity was significantly inhibited in the presence of MSCs. MSC caused an increase of CD4+ T cells and Treg cells but decrease of CD8+ T cells. In addition, MSCs stimulated the expression of indoleamine 2,3-dioxygenase (IDO) and programmed cell death-ligand 1 (PD-L1) that contribute to the immune-suppressive function of tumor. Moreover, MSCs suppressed key components of NLRP3 inflammasome by modulating mitochondrial ROS release. Interestingly, all these suppressive events hindering CAR-T efficacy could be abrogated if the STC1 gene, which encodes the glycoprotein hormone staniocalcin-1, was knockdown in MSC. Using xenograft mice, we confirmed that CAR-T function could also be inhibited by MSC in vivo and STC1 played a critical role. These data revealed a novel function of MSC and staniocalcin-1 in suppressing CAR-T efficacy, which should be considered in cancer therapy and may also have potential applications in controlling the toxicity arising from excessive immune response.
科研通智能强力驱动
Strongly Powered by AbleSci AI