Evaluating the utility of large language models in generating search strings for systematic reviews in anesthesiology: a comparative analysis of top-ranked journals

情报检索 计算机科学 荟萃分析 麻醉学 人口 系统回顾 梅德林 医学 内科学 病理 环境卫生 政治学 法学
作者
Alessandro De Cassai,Burhan Dost,Yunus Emre Karapınar,Müzeyyen Beldağlı,Mirac Selcen Ozkal Yalin,Esra Turunç,Engin İhsan Turan,Nicolò Sella
出处
期刊:Regional Anesthesia and Pain Medicine [BMJ]
卷期号:: rapm-106231
标识
DOI:10.1136/rapm-2024-106231
摘要

Background This study evaluated the effectiveness of large language models (LLMs), specifically ChatGPT 4o and a custom-designed model, Meta-Analysis Librarian, in generating accurate search strings for systematic reviews (SRs) in the field of anesthesiology. Methods We selected 85 SRs from the top 10 anesthesiology journals, according to Web of Science rankings, and extracted reference lists as benchmarks. Using study titles as input, we generated four search strings per SR: three with ChatGPT 4o using general prompts and one with the Meta-Analysis Librarian model, which follows a structured, Population, Intervention, Comparator, Outcome-based approach aligned with Cochrane Handbook standards. Each search string was used to query PubMed, and the retrieved results were compared with the PubMed retrieved studies from the original search string in each SR to assess retrieval accuracy. Statistical analysis compared the performance of each model. Results Original search strings demonstrated superior performance with a 65% (IQR: 43%–81%) retrieval rate, which was statistically different from both LLM groups in PubMed retrieved studies (p=0.001). The Meta-Analysis Librarian achieved a superior median retrieval rate to ChatGPT 4o (median, (IQR); 24% (13%–38%) vs 6% (0%–14%), respectively). Conclusion The findings of this study highlight the significant advantage of using original search strings over LLM-generated search strings in PubMed retrieval studies. The Meta-Analysis Librarian demonstrated notable superiority in retrieval performance compared with ChatGPT 4o. Further research is needed to assess the broader applicability of LLM-generated search strings, especially across multiple databases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张啊啊啊啊a完成签到,获得积分10
2秒前
3秒前
7秒前
完美世界应助南浅采纳,获得10
11秒前
flying发布了新的文献求助10
11秒前
zxx完成签到 ,获得积分10
12秒前
12秒前
爱听歌的青筠完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助重要的冰绿采纳,获得10
15秒前
kytmm2022完成签到,获得积分10
16秒前
18秒前
19秒前
所所应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
冰魂应助科研通管家采纳,获得10
19秒前
冰魂应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得30
19秒前
我是老大应助科研通管家采纳,获得20
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
我爱科研应助科研通管家采纳,获得10
19秒前
无花果应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得80
20秒前
pluto应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
季不住完成签到,获得积分10
21秒前
孙一完成签到,获得积分10
23秒前
23秒前
andrew完成签到 ,获得积分10
23秒前
24秒前
26秒前
123321完成签到 ,获得积分10
27秒前
小东西发布了新的文献求助100
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366