CRISPR-Based Homogeneous Electrochemical Strategy for Near-Zero Background Detection of Breast Cancer Extracellular Vesicles via Fluidity-Enhanced Magnetic Capture Nanoprobe

化学 纳米探针 同种类的 细胞外小泡 乳腺癌 生物物理学 纳米技术 纳米颗粒 癌症 细胞生物学 医学 生物 热力学 物理 内科学 材料科学
作者
Limin Yang,Jingang Zhang,Jing Zhang,Ting Hou,Qian Gao,Xiaojuan Liu,Feng Li
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.analchem.4c05181
摘要

Precise identification and analysis of multiple protein biomarkers on the surface of breast cancer cell-derived extracellular vesicles (BC-EVs) are of great significance for noninvasive diagnosis of the breast cancer subtypes, but it remains a major challenge owing to their high heterogeneity and low abundance. Herein, we established a CRISPR-based homogeneous electrochemical strategy for near-zero background and ultrasensitive detection of BC-EVs. To realize the high-performance capture and isolation of BC-EVs, fluidity-enhanced magnetic nanoprobes were facilely prepared. After capturing BC-EVs, the AND logic gate-based catalytic hairpin assembly (CHA) and the trans-cleavage activity of CRISPR-Cas12a against the magnetic signal nanoprobes were triggered successively, generating a significant electrochemical signal. Notably, the as-developed metal-mediated magnetic signal nanoprobes could efficiently decrease the background signal by magnetic separation, endowing the method with a high signal-to-noise ratio. Consequently, by ingeniously integrating DNA logic gate-based CRISPR-CHA signal amplification with dual magnetic nanoprobes in a homogeneous electrochemical strategy, precise identification and ultrasensitive detection of BC-EVs was successfully achieved through simultaneous and specific recognition of dual protein markers on the BC-EVs surface. More importantly, this approach could effectively discriminate specific subgroups of BC-EVs in clinical serum samples, which may provide great opportunities for the accurate diagnosis and prognosis evaluation of breast cancer in a noninvasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盼夏发布了新的文献求助30
刚刚
欢喜念双发布了新的文献求助30
1秒前
1秒前
1秒前
天天快乐应助执着的一兰采纳,获得10
2秒前
来碗豆腐完成签到,获得积分10
2秒前
wxz完成签到,获得积分10
4秒前
Nina发布了新的文献求助10
4秒前
Simone发布了新的文献求助10
5秒前
5秒前
和谐面包完成签到,获得积分10
6秒前
7秒前
深情夏彤完成签到,获得积分10
7秒前
烂漫的筮发布了新的文献求助10
7秒前
8秒前
明亮巨人完成签到 ,获得积分10
9秒前
chuxia发布了新的文献求助10
10秒前
萌萌哒完成签到 ,获得积分10
10秒前
hairgod发布了新的文献求助10
10秒前
momo发布了新的文献求助10
11秒前
11秒前
Jasper应助六沉采纳,获得10
13秒前
AhhHuang应助momo采纳,获得10
15秒前
zzx完成签到,获得积分10
15秒前
SYLH应助momo采纳,获得10
15秒前
科研小白发布了新的文献求助10
15秒前
海城好人完成签到,获得积分10
16秒前
平常的毛豆应助洪焕良采纳,获得10
16秒前
豆子发布了新的文献求助10
16秒前
18秒前
学渣小林完成签到,获得积分10
18秒前
领导范儿应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
田様应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
21秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816877
求助须知:如何正确求助?哪些是违规求助? 3360272
关于积分的说明 10407488
捐赠科研通 3078282
什么是DOI,文献DOI怎么找? 1690682
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958