MFFOD: Multidomain Feature Fusion Object Detector for Infrared Images

红外线的 探测器 特征(语言学) 对象(语法) 融合 人工智能 计算机视觉 计算机科学 模式识别(心理学) 光学 物理 语言学 哲学
作者
Wenxiao Xu,Qiyuan Yin,Cheng Xu,Zhe Zhao,Yao Li,Donny Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adafd3
摘要

Abstract Infrared imagery surpasses the limitations of visible light images and finds widespread applications in fields such as military reconnaissance and security surveillance. Recent studies on infrared target detection aim to preserve local features and global representations to the greatest extent. However, compared to visible light images, infrared images exhibit inherent challenges such as insufficient texture information and coarse boundaries, which introduce new difficulties to this research. To address these issues, this paper introduces additional information cues from the perspective of enriching feature map information. Specifically, we propose a multidomain feature fusion object detector (MFFOD), whose backbone feature extraction network consists of a convolutional branch and a fast Fourier transform (FFT) branch. This hybrid domain representation enables the extraction of both domain-specific information and global high-frequency and low-frequency information with minimal computational overhead. Furthermore, in the intermediate layers of the network, we have carefully designed a feature injection module that enables comprehensive interaction between channel features and spatial features within a single feature map. Experimental results demonstrate that MFFOD achieves average detection accuracies of 88.97%, 90.32%, and 99.25% on three significant infrared scene datasets, outperforming existing target detection methods. We hope that this general detection algorithm will provide a robust reference for future infrared target detection research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助小金子采纳,获得10
1秒前
酷波er应助小桃子采纳,获得10
1秒前
大模型应助鑫渊采纳,获得10
1秒前
李健的小迷弟应助刘雪晴采纳,获得10
1秒前
1sss发布了新的文献求助10
1秒前
cs完成签到,获得积分10
2秒前
2秒前
3秒前
SYY发布了新的文献求助10
4秒前
你好我要点一个肯德基完成签到,获得积分10
4秒前
4秒前
5秒前
非而者厚应助幽默刺猬采纳,获得10
5秒前
清秀颜演发布了新的文献求助10
5秒前
Rui完成签到,获得积分20
6秒前
隐形曼青应助刘雪晴采纳,获得10
6秒前
Orange应助sky采纳,获得10
6秒前
酷波er应助tumao采纳,获得10
7秒前
乔恶霸完成签到 ,获得积分10
8秒前
One发布了新的文献求助10
8秒前
蜗牛发布了新的文献求助10
8秒前
思源应助Battery-Li采纳,获得10
8秒前
9秒前
10秒前
11秒前
金鱼完成签到,获得积分20
11秒前
11秒前
金元宝完成签到,获得积分10
11秒前
机智翼完成签到,获得积分10
11秒前
Meyako应助元谷雪采纳,获得10
11秒前
12秒前
12秒前
平安喜乐完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
14秒前
Passion完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
一國兩制與國家安全 : 香港國安法透視 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4274794
求助须知:如何正确求助?哪些是违规求助? 3803957
关于积分的说明 11920001
捐赠科研通 3450637
什么是DOI,文献DOI怎么找? 1892172
邀请新用户注册赠送积分活动 943062
科研通“疑难数据库(出版商)”最低求助积分说明 846768