Development of an Active Cerebrovascular Autoregulation Model Using Representation Learning: A Proof of Concept Study With Experimental Data

脑自动调节 医学 自动调节 颅内压 人工智能 代表(政治) 生物医学工程 判别式 脑灌注压 脑血流 模式识别(心理学) 血压 内科学 计算机科学 麻醉 政治学 政治 法学
作者
Bavo Kempen,Samuel P. Klein,Veerle Tineke De Sloovere,Maarten De Vos,Bart Depreitere
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
标识
DOI:10.1227/neu.0000000000003321
摘要

It remains a challenge to monitor cerebrovascular autoregulation (CA) reliably and dynamically in an intensive care unit. The objective was to build a proof-of-concept active CA model exploiting advances in representation learning and the full complexity of the arterial blood pressure (ABP) and intracranial pressure (ICP) signal and outperform the pressure reactivity index (PRx). A porcine cranial window CA data set (n = 20) was used. ABP and ICP signals were preprocessed and downsampled to 20 Hz. Quadriphasic CA state labels were assigned to each piglet's CA curve and projected on their preprocessed ABP and ICP time series. Windowed ABP and ICP segments of 300 seconds, reflecting active CA, were used to optimize a neural network to reconstruct its own input. Reconstruction error of ABP and ICP were compared between active CA and inactive CA, and assessed together with PRx over quadriphasic CA states. The study confirmed that the optimized model achieved stellar reconstruction quality of ABP and ICP segments that derived from active CA while reconstruction quality deteriorated for segments that came from inactive CA. ABP and ICP reconstruction errors steadily increased concurrently with cerebral blood flow deviation from baseline. A significant interaction between variable and CA state showed that the model captured the differential behavior of CA with increasing vs decreasing cerebral perfusion pressures and offered improved discriminative ability regarding PRx. The present work showed that an active CA model can be built using advanced representation learning and the full complexity of 300-second ABP and ICP segments. On assessment in an experimental data set, relevant CA state information was present in both lower and higher frequencies of ABP and ICP. Improved discriminative ability between CA states was attained regarding PRx, which focuses only on slow-wave ABP and ICP information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逝水完成签到 ,获得积分10
1秒前
LiaoKaijian发布了新的文献求助10
1秒前
上官若男应助kuny采纳,获得10
5秒前
缓慢又蓝发布了新的文献求助20
5秒前
居单在此完成签到,获得积分10
8秒前
桃花岛岛主完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
13秒前
14秒前
李颖雪发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
良辰发布了新的文献求助10
17秒前
mymEN完成签到 ,获得积分10
18秒前
20秒前
kuny发布了新的文献求助10
20秒前
科研通AI5应助张泽崇采纳,获得10
21秒前
21秒前
乐怡日尧发布了新的文献求助10
22秒前
安安放完成签到,获得积分10
22秒前
良辰完成签到,获得积分0
24秒前
24秒前
旅途之人发布了新的文献求助10
25秒前
奋斗的蜗牛应助Youtenter采纳,获得10
28秒前
30秒前
骑驴找马发布了新的文献求助10
33秒前
李颖雪完成签到,获得积分20
33秒前
美好的嫣娆完成签到,获得积分20
34秒前
无情的匪完成签到 ,获得积分10
36秒前
jenningseastera应助shuicaoxi采纳,获得10
36秒前
37秒前
xx完成签到,获得积分10
39秒前
40秒前
害羞静柏发布了新的文献求助10
41秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844