A more selective risk-stratified, machine learning based, lung cancer thromboprophylaxis protocol following vats segmentectomy: a prospective cohort study

作者
Di Wang,Songping Cui,Shuqiao Yang,Qing Zhao,Qirui Chen,Jinbai Miao,Yili Fu,Hui Li
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000004151
摘要

Background: Venous thromboembolism (VTE) represents a potentially fatal but preventable postoperative complication. We sought to establish and validate an explainable prediction model based on the machine learning (ML) approach for VTE, and assess its prognostic implications in thoracic oncology patients undergoing VATS Segmentectomy. Materials and methods: We prospectively developed and validated a predictive model for postoperative VTE following VATS segmentectomy. Patients were sequentially enrolled into training (n = 557, Apr.2017-Jan.2021) and validation cohorts (n = 239, Feb.2021-Oct.2022). 49 clinicopathological variables, including the novel biomarker von Willebrand factor A2 (vWF-A2), were evaluated. 11 ML algorithms were compared based on several evaluation indexes including AUC. SHapley Additive exPlanations (SHAP) analysis was utilized for feature ranking and interpretability. The final model was benchmarked against the traditional Caprini score, and the prognostic impact of postoperative VTE on long-term survival was further assessed. Results: In this prospective study, eXtreme gradient boosting (XGBoost) demonstrated superior discriminative performance among 11 evaluated ML-models. After feature reduction based on ranked feature importance, a final interpretable XGBoost model comprising 11 variables was established. This model accurately predicted postoperative VTE in both training (AUC = 0.903) and validation (AUC = 0.856) cohorts, significantly outperforming the conventional Caprini score RAM. Additionally, comparison of oncologic outcomes revealed no significant difference in overall survival (P = 0.068), whereas disease-free survival was significantly shorter in patients experiencing postoperative VTE (P = 0.017). Conclusion: Our explainable risk-stratification ML model not only accurately predicts the risk of VTE following VATS segmentectomy in early-stage NSCLC patients, but also exhibits substantial clinical relevance to adverse prognostic outcomes in this patient cohort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
自由中心发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Akim应助ao采纳,获得10
4秒前
独特觅儿发布了新的文献求助10
4秒前
南下完成签到,获得积分10
6秒前
冯静完成签到,获得积分10
6秒前
锤你猪头发布了新的文献求助10
6秒前
fox199753206发布了新的文献求助10
6秒前
6秒前
lihaifeng发布了新的文献求助10
7秒前
浮浮世世发布了新的文献求助10
7秒前
gz发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6应助踏实小懒虫采纳,获得10
8秒前
9秒前
刘笛发布了新的文献求助10
9秒前
愤怒的店员完成签到,获得积分10
10秒前
10秒前
10秒前
星辰大海应助朱猪侠采纳,获得10
11秒前
Mei完成签到,获得积分10
12秒前
自由中心完成签到,获得积分10
12秒前
hzl发布了新的文献求助10
13秒前
在水一方应助锤你猪头采纳,获得10
13秒前
Jasper应助养殖大鳖采纳,获得10
14秒前
浮游应助狸子采纳,获得10
14秒前
14秒前
不二完成签到 ,获得积分10
15秒前
婧婧完成签到,获得积分10
16秒前
冯静发布了新的文献求助10
16秒前
镓氧锌钇铀完成签到,获得积分0
17秒前
桐桐应助雷家采纳,获得10
18秒前
金22完成签到,获得积分10
19秒前
zhouyan发布了新的文献求助10
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453696
求助须知:如何正确求助?哪些是违规求助? 4561241
关于积分的说明 14281357
捐赠科研通 4485225
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447276
关于科研通互助平台的介绍 1422687