Passivation Improvement of Poly‐SiOx Based TOPCon Contacts by Thermal Annealing in a Water Vapor Atmosphere: Mechanism Exploration and Application Research

钝化 材料科学 退火(玻璃) 水蒸气 吸附 杂质 氧化物 兴奋剂 化学工程 热的 大气(单位) 纳米技术 密度泛函理论 化学物理 工艺工程 光电子学 计算化学 复合材料 物理化学 热力学 有机化学 冶金 化学 工程类 物理 图层(电子)
作者
Jiakai Zhou,Gui‐Chang Wang,Xianglin Su,Huizhi Ren,Yuheng Zeng,Wei Liu,Bike Zhang,Xiaodan Zhang,Ying Zhao,Guofu Hou
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (26) 被引量:4
标识
DOI:10.1002/aenm.202300201
摘要

Abstract Post‐treatment techniques of tunnel oxide passivated contact (TOPCon) structure are universally implemented via executing an additional hydrogenation process to optimize the passivation performance. However, the underlying physical mechanism and which method is most applicable are still being investigated. Herein, the effectiveness of thermal annealing in water vapor and N 2 atmosphere is studied, which is both environmentally friendly and easy to operate. It is demonstrated that compared to other common hydrogenation techniques, the wet N 2 outperforms in improving the passivation performance, which can be attributed to the neutralization of internal defects in poly‐Si and the optimization of structural densities, and interestingly, this gain effect is amplified when this contact is doped with oxygen impurity. A power conversion efficiency of 22.62% is achieved using this technology which verifies its reliability and applicability. A loss analysis based on numerical simulations, outlining ways to achieve higher conversion efficiency and highlighting the great potential of this technology is also provided. Extensive experiments and first‐principles calculations based on density‐functional theory are conducted to clarify the underlying dynamics, including the surface adsorption process and the potentiation mechanisms, revealing that passivation and neutralization of hydrogen atoms couple with the compactness optimization of the structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liguyi完成签到,获得积分10
刚刚
FashionBoy应助Jasky采纳,获得10
1秒前
4秒前
gao_yiyi应助阳光的羊采纳,获得100
4秒前
迷人惜萱完成签到,获得积分10
5秒前
科研通AI5应助1234采纳,获得10
6秒前
6秒前
田様应助机灵的曼岚采纳,获得10
7秒前
yummybacon完成签到,获得积分10
8秒前
超帅柚子完成签到 ,获得积分10
9秒前
韩晨洋发布了新的文献求助10
10秒前
yetong完成签到 ,获得积分10
11秒前
管恩杰发布了新的文献求助10
11秒前
无语完成签到,获得积分10
12秒前
19秒前
迷惘墨香完成签到 ,获得积分10
23秒前
23秒前
赘婿应助mrlsrain采纳,获得10
26秒前
风中的安珊完成签到,获得积分10
29秒前
31秒前
Inevitable发布了新的文献求助10
37秒前
机灵的曼岚完成签到,获得积分10
38秒前
张涛完成签到,获得积分20
38秒前
王淳完成签到 ,获得积分10
38秒前
悬铃木完成签到,获得积分10
39秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
42秒前
共享精神应助科研通管家采纳,获得10
42秒前
orixero应助科研通管家采纳,获得10
42秒前
无花果应助科研通管家采纳,获得10
42秒前
852应助科研通管家采纳,获得10
42秒前
Akim应助科研通管家采纳,获得10
42秒前
斯文败类应助科研通管家采纳,获得10
42秒前
爆米花应助科研通管家采纳,获得10
43秒前
科目三应助科研通管家采纳,获得10
43秒前
华仔应助科研通管家采纳,获得10
43秒前
英俊的铭应助科研通管家采纳,获得10
43秒前
CodeCraft应助科研通管家采纳,获得10
43秒前
笨笨芯应助科研通管家采纳,获得10
43秒前
脑洞疼应助科研通管家采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783129
求助须知:如何正确求助?哪些是违规求助? 3328480
关于积分的说明 10236624
捐赠科研通 3043565
什么是DOI,文献DOI怎么找? 1670577
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119