清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intra- and Peritumoral Radiomics of Contrast-Enhanced Mammography Predicts Axillary Lymph Node Metastasis in Patients With Breast Cancer: A Multicenter Study

列线图 医学 乳腺癌 无线电技术 淋巴结 放射科 乳腺摄影术 肿瘤科 腋窝 转移 癌症 内科学
作者
Zhongyi Wang,Haicheng Zhang,Fan Lin,Ran Zhang,Heng Ma,Ying‐Hong Shi,Ping Yang,Kun Zhang,Feng Zhao,Ning Mao,Haizhu Xie
出处
期刊:Academic Radiology [Elsevier]
卷期号:30: S133-S142 被引量:17
标识
DOI:10.1016/j.acra.2023.02.005
摘要

Rationale and Objectives This multicenter study aimed to explore the feasibility of radiomics based on intra- and peritumoral regions on preoperative breast cancer contrast-enhanced mammography (CEM) to predict axillary lymph node (ALN) metastasis. Materials and Methods A total of 809 patients with preoperative breast cancer CEM images from two centers were retrospectively recruited. Least absolute shrinkage and selection operator (LASSO) regression was used to select radiomics features extracted from CEM images in regions of the tumor and peritumoral area of five and ten mm as well as construct radiomics signature. A nomogram, including the optimal radiomics signature and clinicopathological factors, was then constructed. Nomogram performance was evaluated using AUC and compared with breast radiologists directly. Results In the internal testing set, AUCs of peritumoral signatures decreased when the peritumoral area increased and signaturetumor + 10mm demonstrated the best performance with an AUC of 0.712. The nomogram incorporating signaturetumor + 10mm, tumor diameter, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and CEM-reported lymph node status yielded maximum AUCs of 0.753 and 0.732 in internal and external testing sets, respectively. Moreover, the nomogram outperformed radiologists and improved diagnostic performance of radiologists. Conclusion The nomogram based on CEM intra- and peritumoral regions may provide a noninvasive auxiliary tool to guide treatment strategy of ALN metastasis in breast cancer. This multicenter study aimed to explore the feasibility of radiomics based on intra- and peritumoral regions on preoperative breast cancer contrast-enhanced mammography (CEM) to predict axillary lymph node (ALN) metastasis. A total of 809 patients with preoperative breast cancer CEM images from two centers were retrospectively recruited. Least absolute shrinkage and selection operator (LASSO) regression was used to select radiomics features extracted from CEM images in regions of the tumor and peritumoral area of five and ten mm as well as construct radiomics signature. A nomogram, including the optimal radiomics signature and clinicopathological factors, was then constructed. Nomogram performance was evaluated using AUC and compared with breast radiologists directly. In the internal testing set, AUCs of peritumoral signatures decreased when the peritumoral area increased and signaturetumor + 10mm demonstrated the best performance with an AUC of 0.712. The nomogram incorporating signaturetumor + 10mm, tumor diameter, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and CEM-reported lymph node status yielded maximum AUCs of 0.753 and 0.732 in internal and external testing sets, respectively. Moreover, the nomogram outperformed radiologists and improved diagnostic performance of radiologists. The nomogram based on CEM intra- and peritumoral regions may provide a noninvasive auxiliary tool to guide treatment strategy of ALN metastasis in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦游菌完成签到 ,获得积分10
5秒前
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
changfox完成签到,获得积分10
12秒前
多亿点完成签到 ,获得积分10
16秒前
Una完成签到,获得积分10
29秒前
健忘的晓小完成签到 ,获得积分10
45秒前
46秒前
萍萍完成签到 ,获得积分10
48秒前
小王梓发布了新的文献求助10
49秒前
xiaofeixia完成签到 ,获得积分10
57秒前
yy完成签到 ,获得积分10
1分钟前
爱沉淀的太阳花完成签到,获得积分10
1分钟前
Sparrow0011完成签到,获得积分20
1分钟前
打打应助郑阔采纳,获得10
1分钟前
蔡从安发布了新的文献求助10
1分钟前
mzhang2完成签到 ,获得积分10
1分钟前
1分钟前
青己完成签到 ,获得积分10
1分钟前
郑阔发布了新的文献求助10
1分钟前
蔡从安发布了新的文献求助10
1分钟前
FashionBoy应助方俊驰采纳,获得10
1分钟前
Heart_of_Stone完成签到 ,获得积分10
1分钟前
Sparrow0011关注了科研通微信公众号
1分钟前
HY完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
bkagyin应助郑阔采纳,获得10
1分钟前
一米阳光发布了新的文献求助10
1分钟前
方俊驰发布了新的文献求助10
1分钟前
点点完成签到 ,获得积分10
2分钟前
方俊驰完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706762
求助须知:如何正确求助?哪些是违规求助? 5177725
关于积分的说明 15247353
捐赠科研通 4860157
什么是DOI,文献DOI怎么找? 2608466
邀请新用户注册赠送积分活动 1559319
关于科研通互助平台的介绍 1517165