Intra- and Peritumoral Radiomics of Contrast-Enhanced Mammography Predicts Axillary Lymph Node Metastasis in Patients With Breast Cancer: A Multicenter Study

列线图 医学 乳腺癌 无线电技术 淋巴结 放射科 乳腺摄影术 肿瘤科 腋窝 转移 癌症 内科学
作者
Zhongyi Wang,Haicheng Zhang,Fan Lin,Ran Zhang,Heng Ma,Ying‐Hong Shi,Ping Yang,Kun Zhang,Feng Zhao,Ning Mao,Haizhu Xie
出处
期刊:Academic Radiology [Elsevier]
卷期号:30: S133-S142 被引量:17
标识
DOI:10.1016/j.acra.2023.02.005
摘要

Rationale and Objectives This multicenter study aimed to explore the feasibility of radiomics based on intra- and peritumoral regions on preoperative breast cancer contrast-enhanced mammography (CEM) to predict axillary lymph node (ALN) metastasis. Materials and Methods A total of 809 patients with preoperative breast cancer CEM images from two centers were retrospectively recruited. Least absolute shrinkage and selection operator (LASSO) regression was used to select radiomics features extracted from CEM images in regions of the tumor and peritumoral area of five and ten mm as well as construct radiomics signature. A nomogram, including the optimal radiomics signature and clinicopathological factors, was then constructed. Nomogram performance was evaluated using AUC and compared with breast radiologists directly. Results In the internal testing set, AUCs of peritumoral signatures decreased when the peritumoral area increased and signaturetumor + 10mm demonstrated the best performance with an AUC of 0.712. The nomogram incorporating signaturetumor + 10mm, tumor diameter, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and CEM-reported lymph node status yielded maximum AUCs of 0.753 and 0.732 in internal and external testing sets, respectively. Moreover, the nomogram outperformed radiologists and improved diagnostic performance of radiologists. Conclusion The nomogram based on CEM intra- and peritumoral regions may provide a noninvasive auxiliary tool to guide treatment strategy of ALN metastasis in breast cancer. This multicenter study aimed to explore the feasibility of radiomics based on intra- and peritumoral regions on preoperative breast cancer contrast-enhanced mammography (CEM) to predict axillary lymph node (ALN) metastasis. A total of 809 patients with preoperative breast cancer CEM images from two centers were retrospectively recruited. Least absolute shrinkage and selection operator (LASSO) regression was used to select radiomics features extracted from CEM images in regions of the tumor and peritumoral area of five and ten mm as well as construct radiomics signature. A nomogram, including the optimal radiomics signature and clinicopathological factors, was then constructed. Nomogram performance was evaluated using AUC and compared with breast radiologists directly. In the internal testing set, AUCs of peritumoral signatures decreased when the peritumoral area increased and signaturetumor + 10mm demonstrated the best performance with an AUC of 0.712. The nomogram incorporating signaturetumor + 10mm, tumor diameter, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and CEM-reported lymph node status yielded maximum AUCs of 0.753 and 0.732 in internal and external testing sets, respectively. Moreover, the nomogram outperformed radiologists and improved diagnostic performance of radiologists. The nomogram based on CEM intra- and peritumoral regions may provide a noninvasive auxiliary tool to guide treatment strategy of ALN metastasis in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2024910298发布了新的文献求助20
1秒前
2秒前
七七发布了新的文献求助10
2秒前
激动的猫咪完成签到,获得积分10
2秒前
3秒前
姜彦乔发布了新的文献求助10
4秒前
花怜完成签到,获得积分10
4秒前
浮游应助碧蓝的睫毛采纳,获得10
5秒前
积极的邴发布了新的文献求助10
5秒前
催催催完成签到,获得积分10
5秒前
5秒前
5秒前
星光发布了新的文献求助10
6秒前
英姑应助屁屁小彭采纳,获得10
7秒前
ChenXinde完成签到,获得积分10
7秒前
FashionBoy应助缥缈的青旋采纳,获得10
8秒前
8秒前
向觅夏完成签到,获得积分10
8秒前
大模型应助大海捞针2025采纳,获得10
8秒前
嘻嘻发布了新的文献求助10
8秒前
L~发布了新的文献求助20
9秒前
9秒前
Meihi_Uesugi发布了新的文献求助10
9秒前
高大代容完成签到,获得积分20
10秒前
10秒前
10秒前
许树生完成签到,获得积分20
12秒前
12秒前
7890733发布了新的文献求助10
13秒前
FashionBoy应助苏西采纳,获得10
13秒前
科研通AI6应助谜迪采纳,获得10
14秒前
14秒前
osmanthus发布了新的文献求助30
15秒前
真实的小刺猬关注了科研通微信公众号
15秒前
今后应助豆子采纳,获得10
15秒前
悦耳的颜完成签到,获得积分10
15秒前
初心路发布了新的文献求助10
16秒前
16秒前
17秒前
lzhgoashore完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321342
求助须知:如何正确求助?哪些是违规求助? 4463125
关于积分的说明 13888898
捐赠科研通 4354271
什么是DOI,文献DOI怎么找? 2391659
邀请新用户注册赠送积分活动 1385225
关于科研通互助平台的介绍 1354994