Intra- and Peritumoral Radiomics of Contrast-Enhanced Mammography Predicts Axillary Lymph Node Metastasis in Patients With Breast Cancer: A Multicenter Study

列线图 医学 乳腺癌 无线电技术 淋巴结 放射科 乳腺摄影术 肿瘤科 腋窝 转移 癌症 内科学
作者
Zhongyi Wang,Haicheng Zhang,Fan Lin,Ran Zhang,Heng Ma,Ying‐Hong Shi,Ping Yang,Kun Zhang,Feng Zhao,Ning Mao,Haizhu Xie
出处
期刊:Academic Radiology [Elsevier]
卷期号:30: S133-S142 被引量:17
标识
DOI:10.1016/j.acra.2023.02.005
摘要

Rationale and Objectives This multicenter study aimed to explore the feasibility of radiomics based on intra- and peritumoral regions on preoperative breast cancer contrast-enhanced mammography (CEM) to predict axillary lymph node (ALN) metastasis. Materials and Methods A total of 809 patients with preoperative breast cancer CEM images from two centers were retrospectively recruited. Least absolute shrinkage and selection operator (LASSO) regression was used to select radiomics features extracted from CEM images in regions of the tumor and peritumoral area of five and ten mm as well as construct radiomics signature. A nomogram, including the optimal radiomics signature and clinicopathological factors, was then constructed. Nomogram performance was evaluated using AUC and compared with breast radiologists directly. Results In the internal testing set, AUCs of peritumoral signatures decreased when the peritumoral area increased and signaturetumor + 10mm demonstrated the best performance with an AUC of 0.712. The nomogram incorporating signaturetumor + 10mm, tumor diameter, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and CEM-reported lymph node status yielded maximum AUCs of 0.753 and 0.732 in internal and external testing sets, respectively. Moreover, the nomogram outperformed radiologists and improved diagnostic performance of radiologists. Conclusion The nomogram based on CEM intra- and peritumoral regions may provide a noninvasive auxiliary tool to guide treatment strategy of ALN metastasis in breast cancer. This multicenter study aimed to explore the feasibility of radiomics based on intra- and peritumoral regions on preoperative breast cancer contrast-enhanced mammography (CEM) to predict axillary lymph node (ALN) metastasis. A total of 809 patients with preoperative breast cancer CEM images from two centers were retrospectively recruited. Least absolute shrinkage and selection operator (LASSO) regression was used to select radiomics features extracted from CEM images in regions of the tumor and peritumoral area of five and ten mm as well as construct radiomics signature. A nomogram, including the optimal radiomics signature and clinicopathological factors, was then constructed. Nomogram performance was evaluated using AUC and compared with breast radiologists directly. In the internal testing set, AUCs of peritumoral signatures decreased when the peritumoral area increased and signaturetumor + 10mm demonstrated the best performance with an AUC of 0.712. The nomogram incorporating signaturetumor + 10mm, tumor diameter, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and CEM-reported lymph node status yielded maximum AUCs of 0.753 and 0.732 in internal and external testing sets, respectively. Moreover, the nomogram outperformed radiologists and improved diagnostic performance of radiologists. The nomogram based on CEM intra- and peritumoral regions may provide a noninvasive auxiliary tool to guide treatment strategy of ALN metastasis in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪兔妹妹完成签到 ,获得积分10
1秒前
3秒前
小杨完成签到,获得积分10
4秒前
nice1537完成签到,获得积分10
5秒前
情怀应助顺心人达采纳,获得10
7秒前
霍焱发布了新的文献求助10
8秒前
科研通AI6.1应助Dr.c采纳,获得10
11秒前
碧蓝的安露完成签到 ,获得积分10
12秒前
hhhhxxxx完成签到,获得积分10
14秒前
16秒前
陈豆豆完成签到 ,获得积分10
17秒前
甜甜凉面完成签到,获得积分10
18秒前
懵懂的梦秋完成签到,获得积分10
18秒前
L_chen发布了新的文献求助10
19秒前
李爱国应助zl987采纳,获得10
21秒前
23秒前
Henry完成签到,获得积分10
23秒前
estrella完成签到 ,获得积分10
24秒前
句灼完成签到,获得积分10
25秒前
kevinqpp发布了新的文献求助10
27秒前
27秒前
L_chen完成签到,获得积分20
27秒前
32秒前
32秒前
33秒前
33秒前
33秒前
33秒前
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
Ava应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
Adc应助科研通管家采纳,获得10
33秒前
Ava应助科研通管家采纳,获得10
33秒前
Adc应助科研通管家采纳,获得10
33秒前
freebird应助科研通管家采纳,获得10
33秒前
量子星尘发布了新的文献求助10
33秒前
英姑应助科研通管家采纳,获得10
33秒前
田様应助科研通管家采纳,获得30
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733153
求助须知:如何正确求助?哪些是违规求助? 5346222
关于积分的说明 15323096
捐赠科研通 4878315
什么是DOI,文献DOI怎么找? 2621157
邀请新用户注册赠送积分活动 1570280
关于科研通互助平台的介绍 1527163