Geology-driven modeling: A new probabilistic approach for incorporating uncertain geological interpretations in 3D geological modeling

概率逻辑 地质学家 地质学 露头 地质图 钻孔 统计模型 数据挖掘 一致性(知识库) 地质调查 计算机科学 人工智能 地球物理学 地貌学 古生物学
作者
Rasmus Bødker Madsen,Anne‐Sophie Høyer,Lærke Therese Andersen,Ingelise Møller,Thomas Mejer Hansen
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:309: 106833-106833 被引量:35
标识
DOI:10.1016/j.enggeo.2022.106833
摘要

Combining different sources of information about the subsurface is an inherent challenge in the process of making realistic geological and hydrostratigraphic models. Often the available geological and hydrological data from boreholes or outcrops are sparse and modeling is supplemented spatially with geophysical data to obtain a better understanding of the 3D lithological, structural, and hydrological relations in the study area. In traditional geological modeling, the modeler combines all this information during modeling and consider several factors like e.g., distance to neighboring data, consistency between different information, data uncertainty and geological environment when assigning uncertainties to the interpretation points. However, the assigned uncertainty is subjective and can only be communicated qualitatively. The benefit of a probabilistic model is that it enables a more quantifiable approach to subsurface modeling, but probabilistic models are usually difficult to set up, computationally demanding as well as difficult to interpret for the geologist and decision makers. Moreover, there is little tradition for including geological knowledge/information directly in probabilistic approaches. In the following, we utilize the interpretations from a traditional manually interpreted (cognitive) 3D hydrostratigraphic layer model as input for a probabilistic model. A realization of the subsurface is created from a geological or hydrostratigraphic model by geostatistical simulation of each interpreted layer based on the geologist's interpretation points with corresponding uncertainties. By compiling all the simulated layers, a 3D structural model is obtained. By studying a sample of such 3D realizations, the interpretation uncertainty in the cognitive structural model can be derived. We name this methodology geology-driven modeling (GDM) as it is based on geological interpreted data rather than the geophysical data directly. The methodology is tested using sequential Gaussian simulation on a cognitive hydrostratigraphic model from Denmark. Our results show that GDM successfully allows transforming the static cognitive model into a full probabilistic model and enables the uncertainties to be communicated to further modeling or decisionmakers. The proposed methodology allows updating pre-existing 3D geological and hydrostratigraphic layer models in a geologically intuitive stochastic framework or be directly incorporated into the current modeling framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
52pry发布了新的文献求助10
2秒前
量子光学的腔光力完成签到,获得积分10
4秒前
xkkk完成签到,获得积分10
5秒前
xin发布了新的文献求助10
6秒前
隐形曼青应助52pry采纳,获得10
9秒前
yc完成签到,获得积分10
12秒前
稗子完成签到,获得积分10
13秒前
16秒前
典雅的夜安完成签到,获得积分10
17秒前
吴刚俊完成签到,获得积分10
17秒前
ESLG完成签到 ,获得积分10
20秒前
爱生气的小龙完成签到 ,获得积分10
20秒前
笨笨芯应助诗蕊采纳,获得10
22秒前
zhw完成签到 ,获得积分10
23秒前
26秒前
科研修沟完成签到 ,获得积分10
26秒前
南宫士晋完成签到 ,获得积分10
28秒前
科研通AI2S应助细心映菱采纳,获得10
30秒前
桐桐应助细心映菱采纳,获得10
30秒前
星曳发布了新的文献求助10
31秒前
31秒前
32秒前
34秒前
LIIII完成签到,获得积分10
34秒前
幽默孤容发布了新的文献求助10
36秒前
38秒前
wangbq发布了新的文献求助20
38秒前
conanyangqun完成签到,获得积分10
39秒前
仲夏完成签到,获得积分10
39秒前
Jessica发布了新的文献求助10
40秒前
hongshao0504完成签到,获得积分10
41秒前
李健的小迷弟应助星曳采纳,获得10
44秒前
1z6完成签到 ,获得积分20
48秒前
kingwill应助陈影采纳,获得20
50秒前
53秒前
54秒前
相机大喊大叫完成签到,获得积分10
55秒前
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224191
捐赠科研通 3040859
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649