亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Sensing Feature Extraction Based on Mold Temperature and Melt Pressure for Plastic Injection Molding Quality Assessment

可用性 造型(装饰) 随机森林 进程窗口 过程(计算) 计算机科学 模具 质量(理念) 工程制图 工程类 机械工程 人工智能 材料科学 哲学 复合材料 操作系统 认识论 人机交互
作者
Zhihao Wang,Fu-Chi Wen,Yi-Ting Li,Hao-Hsuan Tsou
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7451-7459 被引量:14
标识
DOI:10.1109/jsen.2023.3247597
摘要

Injection molding is one of the polymer molding methods. Product quality mainly can be affected by temperature and pressure. To observe the process of the melt forming in the mold, it is required to monitor the signal with the sensor. To achieve the purpose of robust molding, this research provides a new design-process window architecture based on machine learning of the injection product quality assessment. The process window is also known as the forming area map. The monitored value for defective products will be above or below the variable limit. The process is set to the center of this window so that any variation within the window will still result in an acceptable product. There are some potential problems in the current process. First, the conventional process window uses a small number of process variables as monitoring indicators, and it cannot provide stronger monitoring indicators. Second, most of the conventional process windows are 2-D and there are many monitoring windows, so the information that can be monitored is limited. Therefore, product quality cannot be effectively monitored without proper selection of important factors. Finally, the current process window can only provide information in the process and cannot make product quality prediction. In order to solve the above problems, a machine learning method is proposed to design the process window. The random forest classifier and regressor are used to predict the product quality. In order to improve the usability of the factor, the design of the proposed new variable is derived from the classical formula of thermodynamics (heat conduction). Using existing factors and proposing time-based feature changes can better represent the molding process as a whole. Based on the experimental results, the proposed variables can effectively increase the predictive performance of random forest model for quality assessment. The research results make a satisfactory result to the quality assessment of industrial injection molding. The accuracy of the prediction results is 100%. Moreover, it can be found from the 3-D process window that the data are very concentrated and can be clearly classified by the hyperplane, which is defined as the shortest distance between two clusters, and this space is the boundary of the process window. Therefore, compared with the past, the judgment boundary based on the random forest process window is no longer a simple boundary. Random forests can provide more accurate visualization boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
11秒前
二三语逢山外山完成签到 ,获得积分10
15秒前
15秒前
34秒前
jumbaumba完成签到,获得积分10
37秒前
汉堡包应助风的忧伤采纳,获得10
44秒前
拼搏冬瓜发布了新的文献求助10
45秒前
Frank完成签到 ,获得积分10
45秒前
54秒前
风的忧伤发布了新的文献求助10
58秒前
1分钟前
1分钟前
blenx完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
瘦瘦友易发布了新的文献求助10
1分钟前
柚一完成签到 ,获得积分10
1分钟前
大模型应助李小猫采纳,获得10
1分钟前
瘦瘦友易完成签到,获得积分20
1分钟前
2分钟前
2分钟前
李小猫完成签到,获得积分10
2分钟前
2分钟前
星际舟完成签到,获得积分10
2分钟前
李小猫发布了新的文献求助10
2分钟前
2分钟前
WerWu完成签到,获得积分0
2分钟前
harden9159完成签到,获得积分10
2分钟前
2分钟前
2分钟前
algain发布了新的文献求助10
2分钟前
2分钟前
闪闪蜜粉完成签到 ,获得积分10
2分钟前
2分钟前
我是老大应助阿托品采纳,获得10
2分钟前
nk发布了新的文献求助10
3分钟前
3分钟前
金007发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509496
求助须知:如何正确求助?哪些是违规求助? 4604404
关于积分的说明 14489705
捐赠科研通 4539155
什么是DOI,文献DOI怎么找? 2487341
邀请新用户注册赠送积分活动 1469804
关于科研通互助平台的介绍 1442014