A difference attention ResNet-LSTM network for epileptic seizure detection using EEG signal

计算机科学 癫痫 癫痫发作 卷积神经网络 深度学习 脑电图 人工智能 残差神经网络 特征(语言学) 模式识别(心理学) 人工神经网络 光学(聚焦) 残余物 心理学 神经科学 算法 语言学 哲学 物理 光学
作者
Xuanjie Qiu,Fang Yan,Haihong Liu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:83: 104652-104652 被引量:76
标识
DOI:10.1016/j.bspc.2023.104652
摘要

Epileptic seizures can affect the patient's physical function and cause irreversible damage to their brain. It is vital to detect epilepsy seizures in time and give patients antiepileptic medical treatment. Hybrid deep learning models, which combine convolutional neural network and recurrent neural network, have better epileptic seizure detection performance as they could simultaneously extract spatial and temporal features. However, the existing hybrid deep learning models still have the following two weaknesses. Firstly, they directly input the raw electroencephalogram signals, where the epilepsy seizure information is limited. Secondly, some characteristic information is extracted in the feature map, distracting the attention of deep learning model. To address these issues, this paper proposes a difference attention ResNet-LSTM network (DARLNet). The proposed model uses a residual neural network (ResNet) and a long short-term memory network (LSTM) to capture spatial correlations and temporal dependencies, respectively. Besides, a difference layer is developed to automatically mine additional epileptic seizure information. Moreover, the channel attention module is introduced to make the model focus on seizure-relevant information. Several groups of experiments are conducted to evaluate the performance of DARLNet based on the Bonn Electroencephalogram dataset, which verifies the superiority of DARLNet on the two-category and five-category epileptic seizure detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soda饼干完成签到 ,获得积分10
2秒前
可问春风完成签到,获得积分10
3秒前
Daybreak完成签到 ,获得积分10
9秒前
越野蟹完成签到,获得积分10
9秒前
15秒前
laber完成签到,获得积分0
16秒前
木拉发布了新的文献求助10
21秒前
雨后完成签到 ,获得积分10
21秒前
21秒前
科目三应助嘻嘻哈哈采纳,获得10
22秒前
能干靖儿应助嘻嘻哈哈采纳,获得40
22秒前
能干靖儿应助嘻嘻哈哈采纳,获得60
22秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
22秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
22秒前
kyle完成签到 ,获得积分10
27秒前
三杠完成签到 ,获得积分10
30秒前
无限晓蓝完成签到 ,获得积分10
31秒前
GLv完成签到,获得积分10
31秒前
彭于晏应助边边角角落落采纳,获得10
32秒前
yinshan完成签到 ,获得积分10
33秒前
烂漫笑晴完成签到 ,获得积分10
33秒前
修仙中应助科研通管家采纳,获得10
34秒前
修仙中应助科研通管家采纳,获得10
34秒前
正己化人应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
修仙中应助科研通管家采纳,获得10
34秒前
甜芋应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
小杭76应助科研通管家采纳,获得10
34秒前
完美世界应助科研通管家采纳,获得10
34秒前
小杭76应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
34秒前
匆匆赶路人完成签到 ,获得积分0
35秒前
Ly完成签到 ,获得积分10
35秒前
小谭完成签到 ,获得积分10
35秒前
37秒前
Jeremy完成签到 ,获得积分10
37秒前
Matberry完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294026
求助须知:如何正确求助?哪些是违规求助? 4444005
关于积分的说明 13831938
捐赠科研通 4327985
什么是DOI,文献DOI怎么找? 2375883
邀请新用户注册赠送积分活动 1371153
关于科研通互助平台的介绍 1336208