GNAEMDA: Microbe-Drug Associations Prediction on Graph Normalized Convolutional Network

计算机科学 规范化(社会学) 图形 嵌入 机器学习 水准点(测量) 人工智能 数据挖掘 理论计算机科学 大地测量学 社会学 人类学 地理
作者
Haonan Huang,Yuping Sun,Meijing Lan,Huizhe Zhang,Guobo Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1635-1643 被引量:8
标识
DOI:10.1109/jbhi.2022.3233711
摘要

The importance of microbe-drug associations (MDA) prediction is evidenced in research. Since traditional wet-lab experiments are both time-consuming and costly, computational methods are widely adopted. However, existing research has yet to consider the cold-start scenarios that commonly seen in real-world clinical research and practices where data of confirmed microbe-drug associations are highly sparse. Therefore, we aim to contribute by developing two novel computational approaches, the GNAEMDA (Graph Normalized Auto-Encoder to predict Microbe-Drug Associations), and a variational extension of the GNAEMDA (called VGNAEMDA), to provide effective and efficient solutions for well-annotated cases and cold-start scenarios. Multi-modal attribute graphs are constructed by collecting multiple features of microbes and drugs, and then input into a graph normalized convolutional network, where a l2-normalization is introduced to avoid the norm-towards-zero tendency of isolated nodes in embedding space. Then the reconstructed graph output by the network is used to infer undiscovered MDA. The difference between the proposed two models lays in the way to generate the latent variables in network. To verify the effectiveness of the two proposed models, we conduct a series of experiments on three benchmark datasets in comparison with six state-of-the-art methods. The comparison results indicate that both GNAEMDA and VGNAEMDA have strong prediction performances in all cases, especially in identifying associations for new microbes or drugs. In addition, we conduct case studies on two drugs and two microbes and find that more than 75% of the predicted associations have been reported in PubMed. The comprehensive experimental results validate the reliability of our models in accurately inferring potential MDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wuniuniu完成签到,获得积分20
刚刚
小恐龙飞飞完成签到 ,获得积分10
2秒前
lily336699发布了新的文献求助10
2秒前
4秒前
Erica发布了新的文献求助10
4秒前
葛擎苍发布了新的文献求助10
4秒前
vivi完成签到 ,获得积分10
6秒前
6秒前
9秒前
机灵橘子发布了新的文献求助50
10秒前
隐形曼青应助sapphire采纳,获得10
12秒前
cy发布了新的文献求助10
13秒前
Star1983发布了新的文献求助10
13秒前
Cathy完成签到,获得积分10
14秒前
Erica完成签到,获得积分10
14秒前
15秒前
滴滴哒完成签到,获得积分10
15秒前
hhhhmmmn完成签到,获得积分10
15秒前
tian发布了新的文献求助10
15秒前
16秒前
香蕉觅云应助蒙太奇采纳,获得10
18秒前
青青子衿发布了新的文献求助10
19秒前
任性英姑完成签到,获得积分10
19秒前
wanci应助tian采纳,获得10
22秒前
Leyan完成签到,获得积分10
22秒前
彩色的尔珍完成签到,获得积分10
23秒前
ws51823808完成签到,获得积分10
29秒前
美好的元珊完成签到,获得积分10
30秒前
悠旷完成签到 ,获得积分10
32秒前
dongqing12311完成签到,获得积分10
32秒前
hh完成签到 ,获得积分10
33秒前
35秒前
Jojo完成签到,获得积分10
35秒前
Star1983完成签到,获得积分10
36秒前
38秒前
君齐发布了新的文献求助10
41秒前
madmax发布了新的文献求助10
43秒前
背书强完成签到 ,获得积分10
44秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745