Electronic structure regulation in the design of low-cost efficient electrocatalysts: From theory to applications

材料科学 电化学 电化学能量转换 电子转移 纳米技术 析氧 质子交换膜燃料电池 贵金属 电催化剂 分解水 催化作用 电极 金属 化学 光化学 物理化学 生物化学 光催化 冶金
作者
Ruiqi Cheng,Yulin Min,Huanxin Li,Chaopeng Fu
出处
期刊:Nano Energy [Elsevier BV]
卷期号:115: 108718-108718 被引量:64
标识
DOI:10.1016/j.nanoen.2023.108718
摘要

Electrocatalysts play a pivotal role in reducing the reaction barriers for key reactions such as the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), which are essential for the development of environment-friendly energy conversion devices including metal air batteries (MABs), proton exchange membrane fuel cells (PEMFCs), oxyhydrogen fuel cells (OFC), and water electrolyzers (WE). Despite the acknowledged effectiveness of noble metals (Pt, Ir, Ru-based) as electrocatalysts, their high cost and scarcity greatly limit their large-scale application. Thus, there is an urgent need to design low precious metal loading/noble metal-free electrocatalysts. The electronic structure plays a crucial role in determining the efficiency of electron transfer during electrochemical reactions. Modifying the electronic structure can facilitate charge transfer processes or create efficient active sites with low reaction energy barriers, both of which are beneficial for designing low precious metal loading/noble metal-free electrocatalysts with high catalytic activity. In this article, we review strategies for modifying materials without introducing other phases (known as self-modification) and introducing other phases (known as multi-phase modification). Specifically, self-modification strategies including heteroatom doping, edge/vacancy engineering, functional group introducing, tuning the exposed crystal planes, and multi-phase modification strategies regarding heterostructure creation are analyzed in detail. These strategies are useful for designing electrocatalysts that reinforce the electron transfer process during electrochemical reactions. Additionally, two approaches for accelerating the electron transfer on the electrode including designing bind-free/integrated electrode structure and constructing membrane electrode assembly, have also been discussed for pushing forward the practical application. At last, we provide a comprehensive summary and future perspectives of both self-modification/multi-phase modification strategies and practical application of these efficient low-cost electrocatalysts in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Zz发布了新的文献求助10
4秒前
番茄炒蛋发布了新的文献求助10
4秒前
澄子完成签到 ,获得积分10
7秒前
星黛露发布了新的文献求助10
7秒前
8秒前
科研通AI5应助琪琪的采纳,获得10
9秒前
李健应助笑点低的文轩采纳,获得10
9秒前
Drjason驳回了Whim应助
9秒前
pluto应助加减乘除采纳,获得10
11秒前
guanze发布了新的文献求助10
13秒前
15秒前
Lina完成签到 ,获得积分10
16秒前
17秒前
feng完成签到,获得积分10
17秒前
吼吼完成签到,获得积分10
17秒前
17秒前
笑点低的文轩完成签到,获得积分20
18秒前
林qjr完成签到,获得积分10
18秒前
超级的紫菜完成签到 ,获得积分10
20秒前
20秒前
丘比特应助feng采纳,获得10
21秒前
mino发布了新的文献求助10
22秒前
川ccc完成签到,获得积分20
22秒前
苏苏苏发布了新的文献求助10
22秒前
orixero应助icecream采纳,获得10
22秒前
23秒前
木木三发布了新的文献求助10
24秒前
Richard完成签到,获得积分10
26秒前
28秒前
完美世界应助川ccc采纳,获得10
30秒前
30秒前
顾矜应助Asteria采纳,获得30
30秒前
完美世界应助科研通管家采纳,获得10
31秒前
Micro_A应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得30
31秒前
Micro_A应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959