Kendall transfer entropy: a novel measure for estimating information transfer in complex systems

传递熵 计算机科学 样本熵 灵敏度(控制系统) 信息传递 熵(时间箭头) 非线性系统 人工智能 无意识 脑电图 模式识别(心理学) 算法 物理 最大熵原理 神经科学 心理学 量子力学 电子工程 精神科 工程类 生物 电信
作者
Xin Wen,Zhenhu Liang,Jing Wang,Changwei Wei,Xiaoli Li
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (4): 046010-046010 被引量:1
标识
DOI:10.1088/1741-2552/ace5dd
摘要

Objective.Transfer entropy (TE) has been widely used to infer causal relationships among dynamical systems, especially in neuroscience. Kendall transformation provides a novel quantization method for estimating information-theoretic measures and shows potential advantages for small-sample neural signals. But it has yet to be introduced into the framework of TE estimation, which commonly suffers from the limitation of small sample sizes. This paper aims to introduce the idea of Kendall correlation into TE estimation and verify its effect.Approach.We proposed the Kendall TE (KTE) which combines the improved Kendall transformation and the TE estimation. To confirm its effectiveness, we compared KTE with two common TE estimation techniques: the adaptive partitioning algorithm (D-V partitioning) and the symbolic TE. Their performances were estimated by simulation experiments which included linear, nonlinear, linear + nonlinear models and neural mass models. Moreover, the KTE was also applied to real electroencephalography (EEG) recordings to quantify the directional connectivity between frontal and parietal regions with propofol-induced general anesthesia.Main results.The simulation results showed that the KTE outperformed the other two methods by many measures: (1) identifying the coupling direction under a small sample size; (2) the sensitivity to coupling strength; (3) noise resistance; and (4) the sensitivity to time-dependent coupling changes. For real EEG recordings, the KTE clearly detected the disrupted frontal-to-parietal connectivity in propofol-induced unconsciousness, which is in agreement with previous findings.Significance.We reveal that the proposed KTE method is a robust and powerful tool for estimating TE, and is particularly suitable for small sample sizes. The KTE also provides an innovative form of quantizing continuous time series for information-theoretic measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执玉完成签到,获得积分20
1秒前
九月发布了新的文献求助10
1秒前
2秒前
溪水哗哗发布了新的文献求助10
2秒前
111完成签到,获得积分10
3秒前
文艺觅波发布了新的文献求助10
3秒前
小蘑菇应助yeon采纳,获得10
3秒前
科研通AI2S应助asata采纳,获得10
3秒前
4秒前
Masetti1完成签到 ,获得积分10
5秒前
Alan完成签到,获得积分10
6秒前
yy发布了新的文献求助30
6秒前
Hh关闭了Hh文献求助
7秒前
传奇3应助烂漫的从彤采纳,获得10
7秒前
7秒前
会爬树的鱼完成签到,获得积分10
7秒前
蘇q发布了新的文献求助10
8秒前
8秒前
酷炫的咖啡豆应助01采纳,获得30
8秒前
9秒前
fan发布了新的文献求助10
10秒前
10秒前
xun发布了新的文献求助10
10秒前
小太阳完成签到,获得积分10
10秒前
乐乐应助T拐拐采纳,获得10
11秒前
12秒前
文艺觅波完成签到,获得积分10
12秒前
aikeyan发布了新的文献求助10
13秒前
qingfengnai发布了新的文献求助10
13秒前
杨大泡泡完成签到 ,获得积分10
15秒前
15秒前
16秒前
爆米花应助偷乐采纳,获得10
17秒前
小袁发布了新的文献求助10
18秒前
20秒前
20秒前
活泼芷文完成签到,获得积分10
20秒前
21秒前
搞怪慕晴完成签到,获得积分10
21秒前
丘比特应助jiayou采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3923856
求助须知:如何正确求助?哪些是违规求助? 3468635
关于积分的说明 10953090
捐赠科研通 3197932
什么是DOI,文献DOI怎么找? 1766867
邀请新用户注册赠送积分活动 856568
科研通“疑难数据库(出版商)”最低求助积分说明 795498