Optimization of lap-joint laser welding parameters using high-fidelity simulations and machine learning mode

材料科学 焊接 激光功率缩放 接头(建筑物) 多孔性 熔池 激光器 热影响区 复合材料 激光束焊接 穿透深度 人工神经网络 机械工程 钨极气体保护焊 结构工程 计算机科学 人工智能 光学 电弧焊 物理 工程类
作者
Yung-An Tsai,Yu‐Lung Lo,M. Mohsin Raza,Ali N. Saleh,Tzu-Ching Chuang,Cheng-Yen Chen,Chi-Pin Chiu
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:24: 6876-6892 被引量:13
标识
DOI:10.1016/j.jmrt.2023.04.256
摘要

In lap joint laser welding, a common practice is to conduct trial-and-error experiments using various parameter settings to determine processing conditions that enhance the quality of the weld. However, these experiments are both time-consuming and expensive. Therefore, in this study, we propose a more systematic approach for determining the optimal laser power and scanning speed in the lap joint of SS316 by using highly accurate simulations and artificial neural network models. The processing maps were obtained for three criteria: the melt pool depth, melt pool width, and cooling rate, respectively, which were screened using appropriate quality criteria to determine the laser power and scanning speed that could simultaneously minimize porosity, the size of the heat affected zone, and residual stress. The validity of the simulation model was confirmed by comparing the simulation results of the melt pool geometry with the experimental data. The mean deviations of the experimental and simulated results for melt pool depth and width were found to be only 5.34% and 10%, respectively. As a result, the joint welds produced using the optimal processing parameters exhibited minimal porosity, which was reduced from 1.22% in a non-penetration zone to 0.21% in an optimized zone. Additionally, these welds achieved an ultimate shear strength of up to 545.77 MPa, which is approximately 32% higher than that of the original base metal. Therefore, the effectiveness of the proposed framework for determining the optimal processing conditions for joint laser welding of SS316 has been confirmed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助务实青亦采纳,获得10
2秒前
DrDong98发布了新的文献求助10
3秒前
4秒前
5秒前
科研通AI2S应助lxsll采纳,获得10
5秒前
5秒前
叶xr发布了新的文献求助30
6秒前
6秒前
qinggui127完成签到 ,获得积分10
7秒前
8秒前
谢慧蕴发布了新的文献求助10
10秒前
10秒前
10秒前
枕上诗书发布了新的文献求助10
11秒前
打打应助xxxhhh采纳,获得10
11秒前
qinggui127关注了科研通微信公众号
11秒前
HHHHTTTT完成签到,获得积分10
11秒前
疯狂的醉蝶完成签到 ,获得积分10
12秒前
无情凡桃发布了新的文献求助10
13秒前
CipherSage应助cndxh采纳,获得10
13秒前
13秒前
13秒前
14秒前
EJSA发布了新的文献求助10
15秒前
韩希发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
yy123发布了新的文献求助10
17秒前
18秒前
Hq发布了新的文献求助10
19秒前
19秒前
cc发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
小悦完成签到 ,获得积分10
21秒前
唐泽雪穗应助沙特土财主采纳,获得10
21秒前
酷酷菲音完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140