Time Series Prediction Based on LSTM-Attention-LSTM Model

计算机科学 时间序列 系列(地层学) 人工智能 序列(生物学) 编码器 机器学习 时间序列 数据建模 数据挖掘 古生物学 遗传学 数据库 生物 操作系统
作者
Xianyun Wen,Weibang Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 48322-48331 被引量:66
标识
DOI:10.1109/access.2023.3276628
摘要

Time series forecasting uses data from the past periods of time to predict future information, which is of great significance in many applications. Existing time series forecasting methods still have problems such as low accuracy when dealing with some non-stationary multivariate time series data forecasting. Aiming at the shortcomings of existing methods, in this paper we propose a new time series forecasting model LSTM-attention-LSTM. The model uses two LSTM models as the encoder and decoder, and introduces an attention mechanism between the encoder and decoder. The model has two distinctive features: first, by using the attention mechanism to calculate the interrelationship between sequence data, it overcomes the disadvantage of the coder-and-decoder model in that the decoder cannot obtain sufficiently long input sequences; second, it is suitable for sequence forecasting with long time steps. In this paper we validate the proposed model based on several real data sets, and the results show that the LSTM-attention-LSTM model is more accurate than some currently dominant models in prediction. The experiment also assessed the effect of the attention mechanism at different time steps by varying the time step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实星星完成签到,获得积分0
1秒前
1秒前
CodeCraft应助huanhuan采纳,获得10
1秒前
ssss发布了新的文献求助10
3秒前
zjkzh发布了新的文献求助10
4秒前
6秒前
6秒前
情怀应助ksduoiwex采纳,获得10
7秒前
进取拼搏发布了新的文献求助10
8秒前
9秒前
10秒前
xxx发布了新的文献求助10
10秒前
在水一方应助Rain采纳,获得10
11秒前
Dannyhsu完成签到,获得积分10
12秒前
pan发布了新的文献求助10
12秒前
陌尘发布了新的文献求助10
15秒前
15秒前
15秒前
yuyu应助大盆采纳,获得10
17秒前
Rain完成签到,获得积分10
18秒前
无花果应助pan采纳,获得10
20秒前
土豪的鸿煊完成签到,获得积分10
21秒前
落后的听双完成签到 ,获得积分10
21秒前
21秒前
北风完成签到 ,获得积分10
22秒前
24秒前
风趣的老太完成签到,获得积分10
24秒前
24秒前
25秒前
小方发布了新的文献求助10
26秒前
无花果应助pan采纳,获得10
29秒前
29秒前
TIWOSS发布了新的文献求助10
29秒前
XieQinxie发布了新的文献求助10
30秒前
huanhuan发布了新的文献求助10
30秒前
SciGPT应助张卓采纳,获得10
30秒前
热心市民应助科研通管家采纳,获得10
32秒前
上官若男应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
JamesPei应助科研通管家采纳,获得20
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800297
求助须知:如何正确求助?哪些是违规求助? 3345583
关于积分的说明 10325859
捐赠科研通 3062057
什么是DOI,文献DOI怎么找? 1680741
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557