Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial–temporal attention and residual learning

残余物 基线(sea) 计算机科学 人工神经网络 一般化 均方误差 卷积神经网络 理论(学习稳定性) 数据挖掘 气象学 环境科学 统计 机器学习 数学 算法 地理 海洋学 地质学 数学分析
作者
Kefei Zhang,Xiaolin Yang,Hua Cao,Jesse Van Griensven Thé,Zhongchao Tan,Hesheng Yu
出处
期刊:Environment International [Elsevier BV]
卷期号:171: 107691-107691 被引量:50
标识
DOI:10.1016/j.envint.2022.107691
摘要

Accurate and reliable forecasting of PM2.5 and PM10 concentrations is important to the public to reasonably avoid air pollution and for the governmental policy responses. However, the prediction of PM2.5 and PM10 concentrations has great uncertainty and instability because of the dynamics of atmospheric flows, making it difficult for a single model to efficiently extract the spatial–temporal dependences. This paper reports a robust forecasting system to achieve accurate multi-step ahead forecasting of PM2.5 and PM10 concentrations. First, correlation analysis is adopted to screen the spatial information on pollution and meteorology that may facilitate the prediction of concentrations in a target city. Then, a spatial–temporal attention mechanism is used to assign weights to original inputs from both space and time dimensions to enhance the essential information. Subsequently, the residual-based convolutional neural network with feature extraction capabilities is employed to model the refined inputs. Finally, five accuracy metrics and two additional statistical tests are applied to comprehensively assess the performance of the proposed forecasting system. In addition, experimental studies of three major cities in the Yangtze River Delta urban agglomeration region indicate that the forecasting system outperforms various prevalent baseline models in terms of accuracy and stability. Quantitatively, the proposed STA-ResCNN model reduces root mean square error by 5.595 %-15.247 % and 6.827 %-16.906 % for the average of 1–4 h ahead predictions in three major cities of PM2.5 and PM10, respectively, compared to baseline models. The applicability and generalization of the proposed forecasting system are further verified by the extended applications in the other 23 cities in the entire region. The results prove that the forecasting system is promising in the early warning, regional prevention, and control of air pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
coesite完成签到,获得积分10
3秒前
莉莉娅89发布了新的文献求助10
3秒前
4秒前
6秒前
e1发布了新的文献求助10
6秒前
落后千雁完成签到,获得积分10
7秒前
7秒前
你好好好发布了新的文献求助10
8秒前
suodeheng发布了新的文献求助18
9秒前
嘉嘉发布了新的文献求助10
11秒前
12秒前
Azyyyy完成签到,获得积分10
13秒前
科研通AI2S应助spujo采纳,获得30
20秒前
20秒前
Gakay发布了新的文献求助10
23秒前
非而者厚应助Wang采纳,获得10
23秒前
zmnzmnzmn应助coesite采纳,获得20
24秒前
小巧书竹完成签到,获得积分20
24秒前
幽默的念双完成签到,获得积分10
24秒前
唐唐完成签到 ,获得积分10
25秒前
锅包肉完成签到 ,获得积分10
27秒前
李健应助莉莉娅89采纳,获得10
30秒前
海bro完成签到 ,获得积分10
31秒前
31秒前
33秒前
dennisysz发布了新的文献求助10
35秒前
CipherSage应助疯狂的宛凝采纳,获得10
38秒前
39秒前
嘉嘉完成签到 ,获得积分10
40秒前
852应助李堃采纳,获得30
41秒前
漂亮白云发布了新的文献求助10
44秒前
古藤完成签到,获得积分10
47秒前
49秒前
yimei发布了新的文献求助10
51秒前
perseverance完成签到,获得积分10
53秒前
沉默南露发布了新的文献求助10
54秒前
54秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211897
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667178
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133