Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network

计算机科学 图形 异构网络 人工神经网络 数据挖掘 理论计算机科学 人工智能 电信 无线网络 无线
作者
Chengqian Lu,Lishen Zhang,Min Zeng,Wei Lan,Guihua Duan,Jianxin Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:4
标识
DOI:10.1093/bib/bbac549
摘要

Emerging evidence has proved that circular RNAs (circRNAs) are implicated in pathogenic processes. They are regarded as promising biomarkers for diagnosis due to covalently closed loop structures. As opposed to traditional experiments, computational approaches can identify circRNA-disease associations at a lower cost. Aggregating multi-source pathogenesis data helps to alleviate data sparsity and infer potential associations at the system level. The majority of computational approaches construct a homologous network using multi-source data, but they lose the heterogeneity of the data. Effective methods that use the features of multi-source data are considered as a matter of urgency. In this paper, we propose a model (CDHGNN) based on edge-weighted graph attention and heterogeneous graph neural networks for potential circRNA-disease association prediction. The circRNA network, micro RNA network, disease network and heterogeneous network are constructed based on multi-source data. To reflect association probabilities between nodes, an edge-weighted graph attention network model is designed for node features. To assign attention weights to different types of edges and learn contextual meta-path, CDHGNN infers potential circRNA-disease association based on heterogeneous neural networks. CDHGNN outperforms state-of-the-art algorithms in terms of accuracy. Edge-weighted graph attention networks and heterogeneous graph networks have both improved performance significantly. Furthermore, case studies suggest that CDHGNN is capable of identifying specific molecular associations and investigating biomolecular regulatory relationships in pathogenesis. The code of CDHGNN is freely available at https://github.com/BioinformaticsCSU/CDHGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
二十四完成签到,获得积分20
1秒前
科研小韩发布了新的文献求助10
2秒前
OliviaLYG发布了新的文献求助10
3秒前
风吹不到海湾完成签到,获得积分10
3秒前
3秒前
丘比特应助阳光采纳,获得10
4秒前
赘婿应助药学小团子采纳,获得10
4秒前
5秒前
crane完成签到,获得积分10
5秒前
宋宋宋2发布了新的文献求助10
6秒前
脑洞疼应助hhh采纳,获得30
6秒前
夜阑卧听完成签到,获得积分10
6秒前
hp发布了新的文献求助10
7秒前
思源应助负责的方盒采纳,获得10
7秒前
orixero应助晴朗采纳,获得10
7秒前
7秒前
李健的小迷弟应助penghaha采纳,获得80
8秒前
Ellie完成签到,获得积分10
8秒前
隐形曼青应助lizhiqian2024采纳,获得10
8秒前
Wrasul完成签到 ,获得积分10
10秒前
10秒前
shinn发布了新的文献求助10
11秒前
11秒前
超帅连虎应助大力如松采纳,获得20
11秒前
二十四给二十四的求助进行了留言
11秒前
11秒前
katherine完成签到 ,获得积分10
12秒前
12秒前
14秒前
小二郎应助球闪采纳,获得10
15秒前
Akim应助xuang采纳,获得10
15秒前
优雅盼海发布了新的文献求助10
16秒前
研友_59AB85发布了新的文献求助10
16秒前
16秒前
华仔应助诸事顺利采纳,获得10
17秒前
阿泽发布了新的文献求助10
18秒前
18秒前
彭于晏应助瓦学弟的妈妈采纳,获得10
19秒前
科目三应助cpli采纳,获得10
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122312
求助须知:如何正确求助?哪些是违规求助? 3660219
关于积分的说明 11586068
捐赠科研通 3361513
什么是DOI,文献DOI怎么找? 1847080
邀请新用户注册赠送积分活动 911647
科研通“疑难数据库(出版商)”最低求助积分说明 827517