Application of GA-BPNN on estimating the flow rate of a centrifugal pump

均方误差 近似误差 离心泵 计算机科学 体积流量 流量(数学) 质量流量 控制理论(社会学) 人工神经网络 均方根 统计 算法 数学 叶轮 人工智能 机械 工程类 几何学 电气工程 控制(管理) 物理
作者
Yuezhong Wu,Denghao Wu,Minghao Fei,Henrik Sørensen,Yun Ren,Jiegang Mou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:119: 105738-105738 被引量:40
标识
DOI:10.1016/j.engappai.2022.105738
摘要

Pumps consume nearly 8% of global electricity as the essential equipment for liquid transportation. A practical method for improving centrifugal pump energy efficiency is accurately predicting and controlling the pump operation status. However, current estimation methods for sensorless flow rate prediction have a significant error at low flow rate conditions. This study adds valve opening as the estimation model input variable, including motor shaft power and speed, to form a back-propagation neural network (BPNN) on an asynchronous motor-driven multistage centrifugal pump. By optimizing the initial weights and thresholds of BPNN, a GA-BPNN model was proposed to improve the prediction accuracy by using a genetic algorithm (GA). The results indicate that, with the addition of the valve opening as an input variable, the accuracy of BPNN-VO and GA-BPNN prediction improves significantly more than BPNN-NVO. Furthermore, the GA-BPNN model produces a significantly lower mean square error (MSE) and root mean square error (RMSE) than the original BPNN model. According to the experimental comparison and analysis, the absolute error of GA-BPNN between predicted flow rate and measured flow rate is less than 0.3 m3/h, the average relative error is less than 2%, and the relative error of low flow rate is less than 5%. This GA-BPNN estimation model significantly improves the accuracy of flow rate prediction, especially at small flow rates, and extends the scope of centrifugal pumps’ monitoring and control technology without flow sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵柚子应助简单小土豆采纳,获得20
刚刚
田様应助wei采纳,获得10
刚刚
刚刚
Cccc小懒发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
共享精神应助lhy采纳,获得10
2秒前
一二发布了新的文献求助10
3秒前
3秒前
大白不白发布了新的文献求助10
4秒前
4秒前
所所应助勤劳的惜萱采纳,获得10
5秒前
feng发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
6秒前
害羞的河马关注了科研通微信公众号
6秒前
haha完成签到,获得积分10
6秒前
7秒前
黑面宝宝完成签到,获得积分10
7秒前
LL完成签到,获得积分10
7秒前
Yuri发布了新的文献求助10
7秒前
江停完成签到,获得积分10
7秒前
小熊丢了完成签到,获得积分20
8秒前
8秒前
LL发布了新的文献求助10
8秒前
欢喜小霸王完成签到 ,获得积分10
9秒前
9秒前
Mia完成签到 ,获得积分10
9秒前
罗婉婷发布了新的文献求助10
9秒前
wxj发布了新的文献求助10
9秒前
乐乐应助静香采纳,获得10
10秒前
慕青应助十三采纳,获得10
10秒前
10秒前
小s发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831