Knowledge graph extension with a pre-trained language model via unified learning method

计算机科学 知识图 人工智能 词汇 自然语言处理 词(群论) 语言模型 背景(考古学) 任务(项目管理) 图形 集合(抽象数据类型) 人工神经网络 理论计算机科学 程序设计语言 经济 语言学 管理 古生物学 哲学 生物
作者
Bonggeun Choi,Youngjoong Ko
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:262: 110245-110245 被引量:19
标识
DOI:10.1016/j.knosys.2022.110245
摘要

Knowledge graphs (KGs) are collections of real-world knowledge that is represented by a structured form of triples. Since they are manually built in their nascent stage, there is a common problem that some links (triples) are missing. Knowledge graph completion (KGC) aims to find those missing links and thereby complete the KGs. However, as knowledge increases through diverse sources, new entities have explosively emerged and they are needed to be connected to existing KGs. Thus, open-world KGC is targeted on extending KGs to those new entities. Dealing with those new entities is challenging because they do not have any connection with entities in the existing KGs. One way to handle the new ones is to embed them with their textual descriptions with pre-trained word embeddings and score them in the graph-vector space with the existing typical KGC models. These models have resulted in meaningful results but there is still a lack of studies on utilizing the latest neural networks, such as pre-trained language models which are known to be better at capturing contexts than pre-trained word embeddings. This paper proposes a novel model that effectively connects new entities and existing KGs through a pre-trained language model. To effectively handle the problem, we utilize two learning methods; one is the classification method of the masked language model (MLM) that predicts a word among a huge vocabulary set with a given context, and the other is multi-task learning based on the Multi-Task for Deep Neural Networks (MT-DNN). Based on the methods, the model first generates an embedding of a new entity using its textual description and then uses the embedding to find one of the existing entities from a KG where the new entity can be connected. The experimental results on three benchmark datasets, DBPedia50k, FB15k-237-OWE, and FB20k, show that the proposed model improves performances by 9.2%p, 4.4%p, and 11.1%p, respectively, and achieves new state-of-the-art performance for all datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二六完成签到,获得积分10
1秒前
xm发布了新的文献求助10
1秒前
不安青牛发布了新的文献求助10
1秒前
流星海发布了新的文献求助10
1秒前
打打应助我不知道该叫啥采纳,获得10
2秒前
田様应助清脆怜寒采纳,获得10
2秒前
归尘发布了新的文献求助10
3秒前
3秒前
大模型应助dd采纳,获得10
4秒前
5秒前
fenghuo发布了新的文献求助10
5秒前
7秒前
pugongying完成签到,获得积分10
8秒前
10秒前
cattle发布了新的文献求助10
11秒前
思源应助felix采纳,获得10
11秒前
11秒前
13秒前
Lawyer完成签到 ,获得积分10
14秒前
西瓜以亦完成签到 ,获得积分10
15秒前
oldchen完成签到 ,获得积分10
15秒前
沉默的念之关注了科研通微信公众号
16秒前
16秒前
科研小白发布了新的文献求助10
18秒前
cattle完成签到,获得积分10
19秒前
xuan完成签到,获得积分10
19秒前
香蕉觅云应助安静的慕凝采纳,获得30
20秒前
沐雪完成签到,获得积分20
20秒前
20秒前
23秒前
陈一冲发布了新的文献求助10
25秒前
26秒前
没大脑的工程师完成签到,获得积分10
26秒前
27秒前
simon完成签到,获得积分10
28秒前
。。。完成签到 ,获得积分10
30秒前
研究僧发布了新的文献求助10
32秒前
虚幻沛菡完成签到,获得积分10
32秒前
33秒前
33秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906101
求助须知:如何正确求助?哪些是违规求助? 3451663
关于积分的说明 10865874
捐赠科研通 3176992
什么是DOI,文献DOI怎么找? 1755187
邀请新用户注册赠送积分活动 848697
科研通“疑难数据库(出版商)”最低求助积分说明 791207