Multi-Agent Reinforcement Learning for Stand Structure Collaborative Optimization of Pinus yunnanensis Secondary Forests

强化学习 随机森林 计算机科学 选择(遗传算法) 森林经营 机器学习 环境科学 农业工程 工程类 农林复合经营
作者
Shuai Xuan,Jianming Wang,Jiting Yin,Yuling Chen,Baoguo Wu
出处
期刊:Forests [MDPI AG]
卷期号:15 (7): 1143-1143 被引量:2
标识
DOI:10.3390/f15071143
摘要

This study aims to investigate the potential and advantages of multi-agent reinforcement learning (MARL) in forest management, offering innovative insights and methodologies for achieving sustainable management of forest ecosystems. Focusing on the Pinus yunnanensis secondary forests in Southwest China, we formulated the objective function and constraints based on both spatial and non-spatial structural indices of the forest stand structure (FSS). The value of the objective function (VOF) served as an indicator for assessing FSS. Leveraging the random selection method (RSM) to select harvested trees, we propose the replanting foreground index (RFI) to enhance replanting optimization. The decision-making processes involved in selection harvest optimization and replanting were modeled as actions within MARL. Through iterative trial-and-error and collaborative strategies, MARL optimized agent actions and collaboration to address the collaborative optimization problem of FSS. We conducted optimization experiments for selection felling and replanting across four circular sample plots, comparing MARL with traditional combinatorial optimization (TCO) and single-agent reinforcement learning (SARL). The findings illustrate the superior practical efficacy of MARL in collaborative optimization of FSS. Specifically, replanting optimization based on RFI outperformed the classical maximum Delaunay generator area method (MDGAM). Across different plots (P1, P2, P3, and P4), MARL consistently improved the maximum VOFs by 54.87%, 88.86%, 41.34%, and 22.55%, respectively, surpassing those of the TCO (38.81%, 70.04%, 41.23%, and 18.73%) and SARL (54.38%, 70.04%, 41.23%, and 18.73%) schemes. The RFI demonstrated superior performance in replanting optimization experiments, emphasizing the importance of considering neighboring trees’ influence on growth space and replanting potential. Following selective logging and replanting adjustments, the FSS of each sample site exhibited varying degrees of improvement. MARL consistently achieved maximum VOFs across different sites, underscoring its superior performance in collaborative optimization of logging and replanting within FSS. This study presents a novel approach to optimizing FSS, contributing to the sustainable management of Pinus yunnanensis secondary forests in southwestern China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晋启轩发布了新的文献求助10
1秒前
2秒前
heyunxiang完成签到 ,获得积分10
3秒前
4秒前
情怀应助爱吃香菜采纳,获得10
5秒前
5秒前
5秒前
mwx应助眯眯眼的代容采纳,获得10
6秒前
共享精神应助ray采纳,获得10
6秒前
yuyuyuyu发布了新的文献求助30
7秒前
7秒前
8秒前
酷炫的雪枫完成签到 ,获得积分10
9秒前
情怀应助快乐若翠采纳,获得30
10秒前
Mumu发布了新的文献求助10
10秒前
小番茄完成签到,获得积分20
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
七七发布了新的文献求助10
12秒前
吴雩完成签到,获得积分10
14秒前
求助人员发布了新的文献求助10
15秒前
15秒前
yuyuyuyu完成签到,获得积分10
16秒前
16秒前
16秒前
深情安青应助康康采纳,获得10
17秒前
科研通AI2S应助晋启轩采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
yeeming应助科研通管家采纳,获得30
18秒前
眯眯眼的代容完成签到,获得积分10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
18秒前
orixero应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得20
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532543
求助须知:如何正确求助?哪些是违规求助? 4621304
关于积分的说明 14577464
捐赠科研通 4561132
什么是DOI,文献DOI怎么找? 2499202
邀请新用户注册赠送积分活动 1479089
关于科研通互助平台的介绍 1450376