Automated 3D ultrasound image segmentation to aid breast cancer image interpretation

分割 超声波 计算机科学 乳腺癌 三维超声 人工智能 乳腺超声检查 乳腺摄影术 医学 癌症 模式识别(心理学) 放射科 内科学
作者
Peng Gu,Won-Mean Lee,Marilyn A. Roubidoux,Jie Yuan,Xueding Wang,Paul L. Carson
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:65: 51-58 被引量:66
标识
DOI:10.1016/j.ultras.2015.10.023
摘要

Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助解语花采纳,获得30
1秒前
传奇3应助解语花采纳,获得30
1秒前
一二三发布了新的文献求助10
1秒前
Yixuan_Zou关注了科研通微信公众号
2秒前
2秒前
3秒前
4秒前
大胆的妙竹完成签到,获得积分10
5秒前
逆行者完成签到,获得积分10
5秒前
牛牛完成签到 ,获得积分20
5秒前
5秒前
6秒前
6秒前
jijahui发布了新的文献求助10
7秒前
耶耶完成签到,获得积分20
8秒前
丘比特应助草莓布丁采纳,获得10
8秒前
9秒前
清秀的语堂完成签到,获得积分20
9秒前
浅笑安然发布了新的文献求助10
11秒前
Hello应助一二三采纳,获得10
11秒前
李健应助yurong采纳,获得10
12秒前
SYLH应助梦锂铧采纳,获得10
13秒前
杨光发布了新的文献求助10
13秒前
小二郎应助青山采纳,获得10
14秒前
15秒前
15秒前
16秒前
清爽的机器猫完成签到 ,获得积分10
18秒前
19秒前
Yixuan_Zou发布了新的文献求助20
20秒前
星辰大海应助木木采纳,获得10
20秒前
20秒前
吹风机完成签到,获得积分10
21秒前
22秒前
22秒前
隐形的西牛完成签到,获得积分10
24秒前
耶耶发布了新的文献求助30
24秒前
杨光完成签到,获得积分10
25秒前
Pie应助吹风机采纳,获得10
25秒前
Setsail24k发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945653
求助须知:如何正确求助?哪些是违规求助? 3490425
关于积分的说明 11056602
捐赠科研通 3221334
什么是DOI,文献DOI怎么找? 1780567
邀请新用户注册赠送积分活动 865588
科研通“疑难数据库(出版商)”最低求助积分说明 799958