Deep learning trained algorithm maintains the quality of half-dose contrast-enhanced liver computed tomography images: Comparison with hybrid iterative reconstruction

医学 计算机断层摄影术 图像质量 对比度(视觉) 断层摄影术 迭代重建 核医学 算法 放射科 人工智能 图像(数学) 计算机科学
作者
Ling-Ming Zeng,Xu Xu,Wen Zeng,Wanlin Peng,Jinge Zhang,Sixian Hu,Keling Liu,Chunchao Xia,Zhenlin Li
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:135: 109487-109487 被引量:18
标识
DOI:10.1016/j.ejrad.2020.109487
摘要

Purpose This study compares the image and diagnostic qualities of a DEep Learning Trained Algorithm (DELTA) for half-dose contrast-enhanced liver computed tomography (CT) with those of a commercial hybrid iterative reconstruction (HIR) method used for standard-dose CT (SDCT). Methods This study enrolled 207 adults, and they were divided into two groups: SDCT and low-dose CT (LDCT). SDCT was reconstructed using the HIR method (SDCTHIR), and LDCT was reconstructed using both the HIR method (LDCTHIR) and DELTA (LDCTDL). Noise, Hounsfield unit (HU) values, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between three image series. Two radiologists assessed the noise, artefacts, overall image quality, visualisation of critical anatomical structures and lesion detection, characterisation and visualisation. Results The mean effective doses were 5.64 ± 1.96 mSv for SDCT and 2.87 ± 0.87 mSv for LDCT. The noise of LDCTDL was significantly lower than that of SDCTHIR and LDCTHIR. The SNR and CNR of LDCTDL were significantly higher than those of the other two groups. The overall image quality, visualisation of anatomical structures and lesion visualisation between LDCTDL and SDCTHIR were not significantly different. For lesion detection, the sensitivities and specificities of SDCTHIR vs. LDCTDL were 81.9 % vs. 83.7 % and 89.1 % vs. 86.3 %, respectively, on a per-patient basis. SDCTHIR showed 75.4 % sensitivity and 82.6 % specificity for lesion characterisation on a per-patient basis, whereas LDCTDL showed 73.5 % sensitivity and 82.4 % specificity. Conclusions LDCT with DELTA had approximately 49 % dose reduction compared with SDCT with HIR while maintaining image quality on contrast-enhanced liver CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yam应助tutututu采纳,获得20
1秒前
bingbing发布了新的文献求助10
2秒前
骆马湖完成签到,获得积分10
3秒前
4秒前
山沟沟完成签到,获得积分10
4秒前
科研通AI6应助出水的芙蓉采纳,获得10
5秒前
bkagyin应助luoshiyi采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
11秒前
科研通AI6应助yhmi0809采纳,获得10
12秒前
12秒前
英姑应助Wxj246801采纳,获得10
14秒前
酷波er应助波尔金诺的秋采纳,获得10
17秒前
周周发布了新的文献求助10
18秒前
大模型应助郭郭采纳,获得10
18秒前
ced完成签到,获得积分10
18秒前
烟花应助科研通管家采纳,获得10
19秒前
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
愿好应助科研通管家采纳,获得10
19秒前
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
不配.应助科研通管家采纳,获得50
19秒前
19秒前
19秒前
19秒前
科研通AI6应助Viva采纳,获得30
21秒前
22秒前
23秒前
武装大脑完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
26秒前
SciGPT应助vergegung采纳,获得10
26秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291290
求助须知:如何正确求助?哪些是违规求助? 3818381
关于积分的说明 11957449
捐赠科研通 3461841
什么是DOI,文献DOI怎么找? 1898801
邀请新用户注册赠送积分活动 947325
科研通“疑难数据库(出版商)”最低求助积分说明 850058