亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A brief review of magnetic anomaly detection

地球磁场 磁异常 异常(物理) 物理 噪音(视频) 计算机科学 领域(数学) 磁场 地球物理学 磁强计 大地测量学 地质学 计算机视觉 数学 凝聚态物理 量子力学 图像(数学) 纯数学
作者
Yue Zhao,Jun hai Zhang,Jia Hui Li,Shuangqiang Liu,Pei xian Miao,Yan SHI,En Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:34
标识
DOI:10.1088/1361-6501/abd055
摘要

The geomagnetic field is the main magnetic field on the surface of the Earth, and its value is generally much larger than that of ferromagnetic objects. The existence of a geomagnetic field makes the ferromagnetic material magnetized, and the magnetized field will make the local total magnetic field abnormal, so it is called an anomalous magnetic field. This unusual magnetic field is a necessary condition for conducting magnetic anomaly detection (MAD). MAD is a widely used passive method for magnetic target detection, and its applications include surface ship target detection, the monitoring of underwater moving targets, land target detection and the identification of seismic activity for metal mining. MAD technology uses a high-sensitivity magnetometer to measure the target magnetic field. The magnetic field data are used to calculate the position, velocity, volume and other parameters of the target to identify and localize the ferromagnetic target. It is of great significance to study MAD data based on geomagnetic background. This paper reviews the MAD methods proposed by researchers in recent years and summarizes them into two categories. One is target based, and the other is noise based. The target-based group of detection methods involves typical magnetic search systems based on the assumption that the magnetometer and the target move relative to each other, which applies to the case where the target motion obeys a specific tracking time mode. The noise-based detection methods are based on statistical analyses of magnetometer noise and are suitable for situations in which assumptions about the mutual motion of the target and the magnetometer cannot be made. The magnetic dipole model is introduced in the second part of the paper, and then an algorithm based on the standard orthogonal basis function (OBF) decomposition is proposed. The algorithm parallels the target to a magnetic dipole and decomposes it into a linear combination of several standard OBFs. Solving for the coefficients of the basis function yields the signal energy function in the basis function space. The results show that the signal-to-noise ratio of the data processed by the OBF algorithm is significantly improved. The OBF can be further optimized; for example, when using a single magnetometer to conduct MAD, the five OBFs can be simplified to three OBFs; to locate the target more accurately when using two magnetometers to form the gradient magnetometer, the five OBFs can be simplified into four OBFs. The OBF algorithm is not very effective in the detection of non-Gaussian white noise, soa model-based auto-regression method with white filtering can be used. In the third part of the paper, four methods based on noise detection are introduced in detail: the minimum entropy filtering method, the high-order crossing MAD method, the stochastic resonance method and wavelet transform. Their respective principles and detection sensitivities are discussed in detail. At the end of the paper, the MAD methods are summarized, their advantages and disadvantages are discussed, and the future development of MAD is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇完成签到 ,获得积分10
15秒前
拼搏的败完成签到 ,获得积分10
23秒前
烟花应助he0570采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
38秒前
Jasper应助科研通管家采纳,获得10
38秒前
yan完成签到 ,获得积分10
1分钟前
实验体8567号完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
清秀的之桃完成签到 ,获得积分10
2分钟前
欣欣子完成签到 ,获得积分10
2分钟前
阿尔法贝塔完成签到 ,获得积分10
2分钟前
3分钟前
lanbing802发布了新的文献求助10
3分钟前
ding应助lanbing802采纳,获得10
4分钟前
4分钟前
郭郭9706发布了新的文献求助10
4分钟前
chiazy完成签到 ,获得积分10
4分钟前
善学以致用应助从容栾采纳,获得10
4分钟前
郭郭9706完成签到,获得积分20
5分钟前
Wu完成签到,获得积分20
5分钟前
Wu发布了新的文献求助10
5分钟前
JamesPei应助mili采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
情怀应助d00007采纳,获得10
7分钟前
mili发布了新的文献求助10
7分钟前
虚心完成签到 ,获得积分10
7分钟前
8分钟前
从容栾发布了新的文献求助10
8分钟前
Obliviate完成签到,获得积分10
8分钟前
Jasmine完成签到,获得积分10
8分钟前
he0570完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
wangyu1993777发布了新的文献求助10
10分钟前
lanbing802发布了新的文献求助10
10分钟前
小二郎应助lanbing802采纳,获得10
10分钟前
mili完成签到,获得积分20
10分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782683
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234369
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799684
科研通“疑难数据库(出版商)”最低求助积分说明 758994