A Small Sample Focused Intelligent Fault Diagnosis Scheme of Machines via Multimodules Learning With Gradient Penalized Generative Adversarial Networks

鉴别器 分类器(UML) 计算机科学 人工智能 断层(地质) 振动 机器学习 对抗制 模式识别(心理学) 数据挖掘 量子力学 电信 探测器 物理 地质学 地震学
作者
Tianci Zhang,Jinglong Chen,Fudong Li,Tongyang Pan,Shuilong He
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:68 (10): 10130-10141 被引量:124
标识
DOI:10.1109/tie.2020.3028821
摘要

Intelligent fault diagnosis of machines has long been a research hotspot and has achieved fruitful results. However, intelligent fault diagnosis is a difficult issue in the case of a small sample due to the lack of fault signals. To solve this problem, a small sample focused intelligent fault diagnosis method via multimodules gradient penalized generative adversarial networks is proposed. The proposed method consists of three network modules: generator, discriminator, and classifier. By adversarial training, the generator can generate mechanical signals in different health conditions. Because of the high similarity to the signals obtained in practice, the generated signals can also be used as training data so that the limited training dataset of the proposed method is expanded. The classifier has a strong ability to extract fault features from raw mechanical signals and then classify different health conditions. The experimental results on two bearing vibration datasets indicate that the proposed method can not only generate bearing vibration signals but also obtain fairly high fault classificati on accuracy under the small sample condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助YZYXR采纳,获得10
刚刚
刚刚
大婷子发布了新的文献求助10
1秒前
Hathaway完成签到,获得积分20
1秒前
科研通AI6应助lishiwei采纳,获得10
2秒前
3秒前
李健应助max采纳,获得10
3秒前
zl发布了新的文献求助10
3秒前
3秒前
3秒前
只是开朗完成签到 ,获得积分10
3秒前
Jasper应助可yi采纳,获得10
4秒前
suchen完成签到,获得积分10
5秒前
5秒前
5秒前
深情安青应助CNC采纳,获得10
6秒前
6秒前
zhhhh发布了新的文献求助10
6秒前
隐形曼青应助Aurora采纳,获得10
6秒前
Jasper应助无语的尔阳采纳,获得10
6秒前
6秒前
大个应助彩色寒凡采纳,获得10
6秒前
右右发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
陌上发布了新的文献求助10
9秒前
ruicao完成签到,获得积分10
9秒前
xuzhe完成签到,获得积分10
9秒前
钟薛菘发布了新的文献求助10
10秒前
汉堡包应助大婷子采纳,获得10
10秒前
11秒前
xzy完成签到 ,获得积分10
11秒前
热狗小面包完成签到,获得积分10
12秒前
Ava应助wcc采纳,获得10
12秒前
1235发布了新的文献求助10
13秒前
彩色寒凡完成签到,获得积分10
13秒前
核桃应助境屾采纳,获得30
13秒前
冷静的凝云完成签到,获得积分10
13秒前
ceng发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468475
求助须知:如何正确求助?哪些是违规求助? 4571886
关于积分的说明 14332538
捐赠科研通 4498526
什么是DOI,文献DOI怎么找? 2464602
邀请新用户注册赠送积分活动 1453226
关于科研通互助平台的介绍 1427841