Abstract 2014: Radiopathomics strategy combining multiparametric MRI with whole-slide image for pretreatment prediction of tumor regression grade to neoadjuvant chemoradiotherapy in rectal cancer

医学 结直肠癌 队列 放射科 放化疗 癌症 活检 放射治疗 内科学 肿瘤科
作者
Lizhi Shao,Zhenyu Liu,Lili Feng,Xiaoying Lou,Zhenhui Li,Xiaoyan Zhang,Xuezhi Zhou,Kai Sun,Dafu Zhang,Lin Wu,Guanyu Yang,Ying‐Shi Sun,Rui‐Hua Xu,Xiang‐Bo Wan,Xinjuan Fan,Jie Tian
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:80 (16_Supplement): 2014-2014 被引量:1
标识
DOI:10.1158/1538-7445.am2020-2014
摘要

Abstract Backgrounds: Tumor regression grade (TRG) reflects the chemoradiosensitivity of rectal cancer patients undergone neoadjuvant treatment, and relates to distinct probabilities of cancer recurrence and survival. However, in clinical practice, it is significantly challenging to rely solely on radiographic or clinical diagnostic information to obtain a patient's pathological response pre-treatment for treatment optimization. The aim was combining both the tumor information of macroscopic radiological and microscopic pathological images to develop and validated a more accurate signature for pretreatment prediction of TRG to neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC) on a multicenter dataset. Materials and Methods: We prospectively enrolled 981 patients (303 in the primary cohort, 678 in three external validation cohort) with clinicopathologically confirmed LARC treated with nCRT followed by surgery between Aug 2007 and Nov 2017, and collected their pretreatment multi-parametric MRI (mp-MRI), whole-slide image (WSI) of biopsy specimen, and pathologic response according to AJCC TRG system as well as clinical outcomes. Briefly, an artificial intelligence model integrating quantitative imaging features of mp-MRI and WSI was proposed to predict each nCRT treated patient into a particular 4-category TRG. The signature from the model (hereafter Rp-Grade) was further assessed in three independent validation cohort. Results: Rp-Grade yielded an overall ACC of 87.76% and revealed significant improvement than signature generating from model with mp-MRI or WSI features alone in all validation cohorts (P<0.0.5) (Table). Performance of radiopathomics signature for predicting 4-category AJCC/CAP TRGMetrics (%) [95% CI]Validation Cohort1 (N=480)Validation Cohort2 (N=150)Validation Cohort3 (N=48)Accuracy87.76 [84.86-90.66]79.71 [72.52-84.9]81.24 [70.15-92.34]PPV (TRG=0)94.58 [90.48-98.69]93.52 [84.68-100.0]83.09 [61.19-100.0]PPV (TRG=1)92.02 [86.19-97.85]70.26 [56.42-84.1]70.26 [56.42-84.1]PPV (TRG=2)83.9 [79.6-88.19]74.24 [63.57-84.92]71.49 [52.04-90.94]PPV (TRG=3)-92.54 [78.21-100.0]-Sensitivity (TRG=0)96.49 [93.03-99.95]96.62 [89.92-100.0]91.3 [74.73-100.0]Sensitivity (TRG=1)96.49 [93.03-99.95]75.57 [61.75-89.4]63.39 [42.96-83.82]Sensitivity (TRG=2)97.16 [95.02-99.29]100.0 [100.0-100.0]100.0 [100.0 100.0]Sensitivity (TRG=3)-35.55 [19.99-51.12]-Note: The evaluation results were represented by ‘-' when the number of categories was insufficient in the independent cohort test. Conclusions: Combining the macroscopic radiological information of the whole tumor and microscopic pathological information of local lesions from biopsy, radiopathomics was a potential strategy for the pretreatment prediction of the TRG in patients with LARC who underwent nCRT. Citation Format: Lizhi Shao, Zhenyu Liu, Lili Feng, Xiaoying Lou, Zhenhui Li, Xiao-Yan Zhang, Xuezhi Zhou, Kai Sun, Da-Fu Zhang, Lin Wu, Guanyu Yang, Ying-Shi Sun, Ruihua Xu, Xiangbo Wan, Xinjuan Fan, Jie Tian. Radiopathomics strategy combining multiparametric MRI with whole-slide image for pretreatment prediction of tumor regression grade to neoadjuvant chemoradiotherapy in rectal cancer [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 2014.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助称心的新之采纳,获得10
1秒前
ok发布了新的文献求助20
2秒前
甜甜圈完成签到 ,获得积分10
2秒前
优雅莞完成签到,获得积分10
4秒前
6秒前
瘦瘦的迎梦完成签到 ,获得积分10
7秒前
aa完成签到 ,获得积分10
8秒前
8秒前
11秒前
大力水手完成签到,获得积分10
13秒前
14秒前
20秒前
西洲完成签到 ,获得积分10
21秒前
XU博士完成签到,获得积分10
21秒前
嗯哈完成签到 ,获得积分10
23秒前
23秒前
快乐谷蓝完成签到,获得积分10
24秒前
江江江江江江江江完成签到,获得积分10
28秒前
ding应助lignin采纳,获得10
30秒前
31秒前
yang完成签到 ,获得积分10
33秒前
畅快老虎发布了新的文献求助10
34秒前
aa完成签到,获得积分10
35秒前
38秒前
lignin完成签到,获得积分10
40秒前
41秒前
lignin发布了新的文献求助10
43秒前
鸭鸭完成签到 ,获得积分10
44秒前
念l完成签到 ,获得积分10
47秒前
独特的秋完成签到,获得积分10
49秒前
cathy完成签到 ,获得积分10
49秒前
xdy完成签到 ,获得积分10
50秒前
WeilaiTong完成签到,获得积分10
52秒前
58秒前
刻苦牛马完成签到 ,获得积分10
59秒前
楚寅完成签到 ,获得积分10
1分钟前
1分钟前
LXZ完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4486084
求助须知:如何正确求助?哪些是违规求助? 3941378
关于积分的说明 12221709
捐赠科研通 3597328
什么是DOI,文献DOI怎么找? 1978528
邀请新用户注册赠送积分活动 1015493
科研通“疑难数据库(出版商)”最低求助积分说明 908674