Abstract Use of a protective coating on a lithium metal anode (LMA) is an effective approach to enhance its coulombic efficiency and cycling stability. Here, a facile approach to produce uniform silver nanoparticle‐decorated LMA for high‐performance Li metal batteries (LMBs) is reported. This effective treatment can lead to well‐controlled nucleation and the formation of a stable solid electrolyte interphase (SEI). Ag nanoparticles embedded in the surface of Li anodes induce uniform Li plating/stripping morphologies with reduced overpotential. More importantly, cross‐linked lithium fluoride‐rich interphase formed during Ag + reduction enables a highly stable SEI layer. Based on the Ag‐LiF decorated anodes, LMBs with LiNi 1/3 Mn 1/3 Co 1/3 O 2 cathode (≈1.8 mAh cm −2 ) can retain >80% capacity over 500 cycles. The similar approach can also be used to treat sodium metal anodes. Excellent stability (80% capacity retention in 10 000 cycles) is obtained for a Na||Na 3 V 2 (PO 4 ) 3 full cell using a Na‐Ag‐NaF/Na anode cycled in carbonate electrolyte. These results clearly indicate that synergetic control of the nucleation and SEI is an efficient approach to stabilize rechargeable metal batteries.