Identification of Genuine and Adulterated Pinellia ternata by Mid-Infrared (MIR) and Near-Infrared (NIR) Spectroscopy with Partial Least Squares - Discriminant Analysis (PLS-DA)

半夏 偏最小二乘回归 化学计量学 化学 线性判别分析 近红外光谱 分析化学(期刊) 模式识别(心理学) 人工智能 色谱法 数学 统计 物理 计算机科学 光学 病理 医学 中医药 替代医学
作者
Fei Sun,Yu Chen,Kai-Yang Wang,Shumei Wang,Shengwang Liang
出处
期刊:Analytical Letters [Taylor & Francis]
卷期号:53 (6): 937-959 被引量:17
标识
DOI:10.1080/00032719.2019.1687507
摘要

Spectroscopy techniques are powerful tools for the rapid identification of traditional Chinese medicine because they provide chemical information with no sample preparation. In this study, a rapid and reliable approach was proposed to differentiate Pinellia ternata from adulterated P. ternata, processed P. ternata, and adulterated processed P. ternata by mid-infrared (MIR) and near-infrared (NIR) spectroscopy coupled with a partial least squares-discriminant analysis (PLS-DA) algorithm. One-hundred sixty-five batches of P. ternata, adulterated P. ternata, processed P. ternata, and adulterated processed P. ternata samples were collected and prepared. All of the samples were characterized by MIR and NIR spectra. The PLS-DA was first applied to build the discriminant model on the individual data matrices. Next, the data matrices coming from MIR and NIR spectra were fused at the low-level and mid-level, and PLS-DA models were built on the fused data. The classification accuracy, sensitivity, and specificity were calculated to evaluate the PLS-DA models. The results showed the use of mid-level fusion strategy, in particular, integrating latent variables from different spectral data matrices, allowed the correct discrimination of all samples in the training and testing sets. In the case of mid-level fusion with latent variables, the accuracy of the PLS-DA model was 100%, and the sensitivity and specificity of the PLS-DA model were all 1. The present discriminant model can be successful to differentiate P. ternata from adulterated P. ternata, processed P. ternata, and adulterated processed P. ternata. This study first provides a new path for the quality control of P. ternata.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助梁博采纳,获得30
刚刚
1秒前
逝月发布了新的文献求助10
3秒前
苏孟完成签到,获得积分10
5秒前
一路硕博应助Paul111采纳,获得30
5秒前
wananan发布了新的文献求助10
7秒前
Iris完成签到,获得积分10
7秒前
怕黑豪英应助kiguf采纳,获得10
9秒前
10秒前
12秒前
13秒前
幽默大象完成签到 ,获得积分10
13秒前
13秒前
kirirto发布了新的文献求助20
15秒前
456发布了新的文献求助10
16秒前
黄风小圣完成签到 ,获得积分10
17秒前
Lionnn发布了新的文献求助10
18秒前
高大的羽毛应助zww采纳,获得10
18秒前
21秒前
22秒前
chloe完成签到,获得积分20
22秒前
456完成签到,获得积分20
24秒前
gxzsdf完成签到 ,获得积分10
24秒前
24秒前
研友_nxGxlL完成签到,获得积分10
26秒前
26秒前
chloe发布了新的文献求助10
26秒前
27秒前
Jasper应助绵羊不爱学习采纳,获得10
29秒前
甜蜜花完成签到,获得积分10
29秒前
科目三应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得30
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得20
30秒前
12应助科研通管家采纳,获得10
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
司空豁应助科研通管家采纳,获得10
30秒前
慕青应助科研通管家采纳,获得10
30秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3901098
求助须知:如何正确求助?哪些是违规求助? 3445830
关于积分的说明 10841745
捐赠科研通 3170892
什么是DOI,文献DOI怎么找? 1752034
邀请新用户注册赠送积分活动 847008
科研通“疑难数据库(出版商)”最低求助积分说明 789588