A Novel Approach for Enhancing Thermal Performance of Battery Modules Based on Finite Element Modeling and Predictive Modeling Mechanism

电池组 计算机科学 电池(电) 体积热力学 电动汽车蓄电池 有限元法 热的 汽车工程 工程类 结构工程 功率(物理) 物理 热力学
作者
Akhil Garg,C. Ruhatiya,Xujian Cui,Xiongbin Peng,Yogesh Bhalerao,Liang Gao
出处
期刊:Journal of electrochemical energy conversion and storage [ASM International]
卷期号:17 (2) 被引量:10
标识
DOI:10.1115/1.4045194
摘要

Abstract Electric vehicles (EVs) are estimated as the most sustainable solutions for future transportation requirements. However, there are various problems related to the battery pack module and one such problem is invariable high-temperature differences across the battery pack module due to the discharging and charging of batteries under operating conditions of EVs. High-temperature differences across the battery module contribute to the degradation of maximum charge storage and capacity of Li-ion batteries which ultimately affects the performance of EVs. To address this problem, a finite element modeling (FEM) based automated neural network search (ANS) approach is proposed. The research methodology constitutes of four stages: design of air-cooled battery pack module, setup of the FEM constraints and thermal equations, formulating the predictive model on generated data using ANS, and lastly performing multi-objective response optimization of the best fit predictive model to formulate optimum design constraints for the air-cooled battery module. For efficient thermal management of the battery module, an empirical model is formulated using the mentioned methodology for minimizing the maximum temperature differences, standard deviation of temperature across the battery pack module, and battery pack volume. The results obtained are as follows: (1) the battery pack module volume is reduced from 0.003279 m3 to 0.002321 m3 by 29.21%, (2) the maximum temperature differences across the eight cells of battery pack module declines from 6.81 K to 4.38 K by 35.66%, and (3) the standard deviation of temperature across battery pack decreases from 4.38 K to 0.93 K by 78.69%. Thus, the predictive empirical model enhances the thermal management and safety factor of battery module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助机灵的谷秋采纳,获得10
刚刚
1秒前
无敌干扰素完成签到,获得积分10
1秒前
科研通AI5应助微酸的蓝莓采纳,获得10
1秒前
1秒前
呆萌的鼠标完成签到 ,获得积分0
1秒前
2秒前
szr发布了新的文献求助10
2秒前
无限夏云完成签到,获得积分10
2秒前
JamesPei应助123采纳,获得10
2秒前
宁静致远发布了新的文献求助10
2秒前
Lucas应助瘦瘦绮采纳,获得10
2秒前
诚心的冰棍完成签到,获得积分10
2秒前
zjh发布了新的文献求助10
2秒前
Benjamin完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
WILAY889完成签到,获得积分10
3秒前
4秒前
打打应助叶艳采纳,获得10
5秒前
5秒前
欢呼的未来完成签到 ,获得积分10
5秒前
5秒前
DA发布了新的文献求助10
6秒前
6秒前
6秒前
舒心的耷完成签到,获得积分10
6秒前
科研顺利发布了新的文献求助10
7秒前
一蓑烟雨任平生应助黑猫采纳,获得10
8秒前
8秒前
changping应助xz采纳,获得10
8秒前
momo完成签到,获得积分10
8秒前
大模型应助龍龖龘采纳,获得10
8秒前
地瓜儿发布了新的文献求助30
9秒前
局外人发布了新的社区帖子
9秒前
xiaoxu完成签到,获得积分20
9秒前
Hunter1023完成签到,获得积分10
9秒前
科研通AI6应助pppy采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070552
求助须知:如何正确求助?哪些是违规求助? 4291675
关于积分的说明 13371209
捐赠科研通 4111892
什么是DOI,文献DOI怎么找? 2251771
邀请新用户注册赠送积分活动 1256853
关于科研通互助平台的介绍 1189497