A Novel Approach for Enhancing Thermal Performance of Battery Modules Based on Finite Element Modeling and Predictive Modeling Mechanism

电池组 计算机科学 电池(电) 体积热力学 电动汽车蓄电池 有限元法 热的 汽车工程 工程类 结构工程 功率(物理) 物理 热力学
作者
Akhil Garg,C. Ruhatiya,Xujian Cui,Xiongbin Peng,Yogesh Bhalerao,Liang Gao
出处
期刊:Journal of electrochemical energy conversion and storage [ASM International]
卷期号:17 (2) 被引量:10
标识
DOI:10.1115/1.4045194
摘要

Abstract Electric vehicles (EVs) are estimated as the most sustainable solutions for future transportation requirements. However, there are various problems related to the battery pack module and one such problem is invariable high-temperature differences across the battery pack module due to the discharging and charging of batteries under operating conditions of EVs. High-temperature differences across the battery module contribute to the degradation of maximum charge storage and capacity of Li-ion batteries which ultimately affects the performance of EVs. To address this problem, a finite element modeling (FEM) based automated neural network search (ANS) approach is proposed. The research methodology constitutes of four stages: design of air-cooled battery pack module, setup of the FEM constraints and thermal equations, formulating the predictive model on generated data using ANS, and lastly performing multi-objective response optimization of the best fit predictive model to formulate optimum design constraints for the air-cooled battery module. For efficient thermal management of the battery module, an empirical model is formulated using the mentioned methodology for minimizing the maximum temperature differences, standard deviation of temperature across the battery pack module, and battery pack volume. The results obtained are as follows: (1) the battery pack module volume is reduced from 0.003279 m3 to 0.002321 m3 by 29.21%, (2) the maximum temperature differences across the eight cells of battery pack module declines from 6.81 K to 4.38 K by 35.66%, and (3) the standard deviation of temperature across battery pack decreases from 4.38 K to 0.93 K by 78.69%. Thus, the predictive empirical model enhances the thermal management and safety factor of battery module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234发布了新的文献求助30
刚刚
刚刚
月夕完成签到 ,获得积分10
刚刚
长长的名字完成签到 ,获得积分10
1秒前
royan发布了新的文献求助10
1秒前
ckb0901完成签到,获得积分10
1秒前
吴若魔发布了新的文献求助10
2秒前
kyle完成签到 ,获得积分10
2秒前
2秒前
3秒前
乾坤完成签到,获得积分10
3秒前
Min完成签到,获得积分10
3秒前
龚佳豪完成签到,获得积分10
3秒前
纯真的夏柳完成签到,获得积分10
4秒前
4秒前
小坤同学完成签到,获得积分10
4秒前
5秒前
可可完成签到,获得积分20
6秒前
6秒前
skskysky完成签到,获得积分10
6秒前
6秒前
晨丶完成签到,获得积分20
6秒前
6秒前
犹豫的怀蝶完成签到,获得积分10
7秒前
万能图书馆应助royan采纳,获得10
7秒前
眼睛大的仰完成签到 ,获得积分10
7秒前
莫0817完成签到,获得积分10
7秒前
奥利给完成签到,获得积分10
8秒前
又又完成签到,获得积分20
8秒前
123566完成签到,获得积分10
9秒前
烟花应助慕容雅柏采纳,获得10
9秒前
HXH完成签到,获得积分10
9秒前
10秒前
NexusExplorer应助性温雅采纳,获得10
10秒前
lzm10010完成签到,获得积分10
10秒前
11秒前
广东第一深情完成签到,获得积分10
11秒前
hsf完成签到,获得积分10
11秒前
tinanao完成签到,获得积分10
11秒前
义气小笼包完成签到,获得积分10
12秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3904213
求助须知:如何正确求助?哪些是违规求助? 3449297
关于积分的说明 10856978
捐赠科研通 3174561
什么是DOI,文献DOI怎么找? 1753862
邀请新用户注册赠送积分活动 848047
科研通“疑难数据库(出版商)”最低求助积分说明 790671