A Novel Approach for Enhancing Thermal Performance of Battery Modules Based on Finite Element Modeling and Predictive Modeling Mechanism

电池组 计算机科学 电池(电) 体积热力学 电动汽车蓄电池 有限元法 热的 汽车工程 工程类 结构工程 功率(物理) 物理 热力学
作者
Akhil Garg,C. Ruhatiya,Xujian Cui,Xiongbin Peng,Yogesh Bhalerao,Liang Gao
出处
期刊:Journal of electrochemical energy conversion and storage [ASM International]
卷期号:17 (2) 被引量:10
标识
DOI:10.1115/1.4045194
摘要

Abstract Electric vehicles (EVs) are estimated as the most sustainable solutions for future transportation requirements. However, there are various problems related to the battery pack module and one such problem is invariable high-temperature differences across the battery pack module due to the discharging and charging of batteries under operating conditions of EVs. High-temperature differences across the battery module contribute to the degradation of maximum charge storage and capacity of Li-ion batteries which ultimately affects the performance of EVs. To address this problem, a finite element modeling (FEM) based automated neural network search (ANS) approach is proposed. The research methodology constitutes of four stages: design of air-cooled battery pack module, setup of the FEM constraints and thermal equations, formulating the predictive model on generated data using ANS, and lastly performing multi-objective response optimization of the best fit predictive model to formulate optimum design constraints for the air-cooled battery module. For efficient thermal management of the battery module, an empirical model is formulated using the mentioned methodology for minimizing the maximum temperature differences, standard deviation of temperature across the battery pack module, and battery pack volume. The results obtained are as follows: (1) the battery pack module volume is reduced from 0.003279 m3 to 0.002321 m3 by 29.21%, (2) the maximum temperature differences across the eight cells of battery pack module declines from 6.81 K to 4.38 K by 35.66%, and (3) the standard deviation of temperature across battery pack decreases from 4.38 K to 0.93 K by 78.69%. Thus, the predictive empirical model enhances the thermal management and safety factor of battery module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhangliangfu发布了新的文献求助10
1秒前
李健应助糟糕的洋葱采纳,获得10
2秒前
缓慢洋葱完成签到 ,获得积分10
2秒前
coconut发布了新的文献求助10
3秒前
3秒前
万能图书馆应助折折采纳,获得10
4秒前
祁风应助more采纳,获得20
4秒前
大脸猫4811发布了新的文献求助10
5秒前
kangkang完成签到,获得积分10
5秒前
无奈擎苍完成签到,获得积分10
5秒前
6秒前
小小发布了新的文献求助10
6秒前
6秒前
8秒前
王崇然发布了新的文献求助10
8秒前
纪震宇发布了新的文献求助20
8秒前
学术小天才完成签到,获得积分10
9秒前
平淡的从安完成签到,获得积分10
9秒前
HHHH完成签到,获得积分20
11秒前
小辉发布了新的文献求助10
11秒前
zoey完成签到,获得积分10
11秒前
12秒前
慕青应助大脸猫4811采纳,获得10
13秒前
yue发布了新的文献求助10
13秒前
14秒前
kk完成签到,获得积分20
17秒前
18秒前
杀出个黎明应助小小采纳,获得10
19秒前
19秒前
大气的宛海完成签到,获得积分10
21秒前
李麟发布了新的文献求助10
22秒前
大壮_0808完成签到,获得积分10
22秒前
折折发布了新的文献求助10
24秒前
cccchen发布了新的文献求助10
25秒前
天天快乐应助王崇然采纳,获得10
26秒前
NexusExplorer应助Bear采纳,获得10
26秒前
脑洞疼应助自觉的醉波采纳,获得10
26秒前
xuuuuumin完成签到,获得积分10
26秒前
Y.X.发布了新的文献求助20
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Cysteine protease ervatamin-B-like-mediated spermatophore digestion and sperm release impair fertility of Plutella xylostella females 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4127379
求助须知:如何正确求助?哪些是违规求助? 3664811
关于积分的说明 11595850
捐赠科研通 3363984
什么是DOI,文献DOI怎么找? 1848552
邀请新用户注册赠送积分活动 912470
科研通“疑难数据库(出版商)”最低求助积分说明 828067