Heterogeneous Transfer Learning for Hyperspectral Image Classification Based on Convolutional Neural Network

判别式 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 学习迁移 上下文图像分类 高光谱成像 人工神经网络 深度学习 特征(语言学) 数据集 机器学习 图像(数学) 语言学 哲学
作者
Xin He,Yushi Chen,Pedram Ghamisi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (5): 3246-3263 被引量:151
标识
DOI:10.1109/tgrs.2019.2951445
摘要

Deep convolutional neural networks (CNNs) have shown their outstanding performance in the hyperspectral image (HSI) classification. The success of CNN-based HSI classification relies on the availability sufficient training samples. However, the collection of training samples is expensive and time consuming. Besides, there are many pretrained models on large-scale data sets, which extract the general and discriminative features. The proper reusage of low-level and midlevel representations will significantly improve the HSI classification accuracy. The large-scale ImageNet data set has three channels, but HSI contains hundreds of channels. Therefore, there are several difficulties to simply adapt the pretrained models for the classification of HSIs. In this article, heterogeneous transfer learning for HSI classification is proposed. First, a mapping layer is used to handle the issue of having different numbers of channels. Then, the model architectures and weights of the CNN trained on the ImageNet data sets are used to initialize the model and weights of the HSI classification network. Finally, a well-designed neural network is used to perform the HSI classification task. Furthermore, attention mechanism is used to adjust the feature maps due to the difference between the heterogeneous data sets. Moreover, controlled random sampling is used as another training sample selection method to test the effectiveness of the proposed methods. Experimental results on four popular hyperspectral data sets with two training sample selection strategies show that the transferred CNN obtains better classification accuracy than that of state-of-the-art methods. In addition, the idea of heterogeneous transfer learning may open a new window for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
xy完成签到 ,获得积分10
15秒前
SY完成签到 ,获得积分10
16秒前
zhoahai完成签到 ,获得积分10
17秒前
GDL完成签到 ,获得积分10
18秒前
沉静一刀完成签到 ,获得积分10
19秒前
20秒前
21秒前
科目三应助qiehahah采纳,获得10
25秒前
26秒前
lmh发布了新的文献求助10
27秒前
领导范儿应助win采纳,获得10
28秒前
hatalucky发布了新的文献求助10
31秒前
Ye完成签到,获得积分20
33秒前
33秒前
40秒前
41秒前
多情道之完成签到 ,获得积分10
42秒前
qiehahah发布了新的文献求助10
46秒前
胡须发布了新的文献求助10
46秒前
xiaohao完成签到 ,获得积分10
48秒前
淡定成风完成签到,获得积分10
48秒前
冰魂应助三泥采纳,获得20
51秒前
qiao应助duck99采纳,获得10
58秒前
59秒前
FashionBoy应助abib采纳,获得10
1分钟前
泡泡鱼完成签到 ,获得积分10
1分钟前
1分钟前
jjwen发布了新的文献求助10
1分钟前
天下无敌完成签到 ,获得积分10
1分钟前
1分钟前
自信的孱发布了新的文献求助10
1分钟前
搜集达人应助胡须采纳,获得10
1分钟前
机灵哲瀚完成签到,获得积分10
1分钟前
qiao应助xyzlancet采纳,获得10
1分钟前
giao完成签到,获得积分10
1分钟前
谷雨完成签到,获得积分10
1分钟前
结实智宸完成签到,获得积分10
1分钟前
1分钟前
领导范儿应助谷雨采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777008
求助须知:如何正确求助?哪些是违规求助? 3322389
关于积分的说明 10210090
捐赠科研通 3037746
什么是DOI,文献DOI怎么找? 1666872
邀请新用户注册赠送积分活动 797711
科研通“疑难数据库(出版商)”最低求助积分说明 758040