亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A strategy to apply machine learning to small datasets in materials science

机器学习 人工智能 计算机科学 概括性 预测建模 财产(哲学) 特征(语言学) 心理学 哲学 语言学 认识论 心理治疗师
作者
Ying Zhang,Chen Ling
出处
期刊:npj computational materials [Nature Portfolio]
卷期号:4 (1) 被引量:593
标识
DOI:10.1038/s41524-018-0081-z
摘要

Abstract There is growing interest in applying machine learning techniques in the research of materials science. However, although it is recognized that materials datasets are typically smaller and sometimes more diverse compared to other fields, the influence of availability of materials data on training machine learning models has not yet been studied, which prevents the possibility to establish accurate predictive rules using small materials datasets. Here we analyzed the fundamental interplay between the availability of materials data and the predictive capability of machine learning models. Instead of affecting the model precision directly, the effect of data size is mediated by the degree of freedom (DoF) of model, resulting in the phenomenon of association between precision and DoF. The appearance of precision–DoF association signals the issue of underfitting and is characterized by large bias of prediction, which consequently restricts the accurate prediction in unknown domains. We proposed to incorporate the crude estimation of property in the feature space to establish ML models using small sized materials data, which increases the accuracy of prediction without the cost of higher DoF. In three case studies of predicting the band gap of binary semiconductors, lattice thermal conductivity, and elastic properties of zeolites, the integration of crude estimation effectively boosted the predictive capability of machine learning models to state-of-art levels, demonstrating the generality of the proposed strategy to construct accurate machine learning models using small materials dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
41秒前
不打烊吗发布了新的文献求助10
47秒前
李爱国应助不打烊吗采纳,获得30
53秒前
孙燕完成签到,获得积分10
1分钟前
1分钟前
成就丸子完成签到 ,获得积分10
1分钟前
zhj发布了新的文献求助10
1分钟前
大个应助爱听歌笑寒采纳,获得10
1分钟前
zhj完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
郭497发布了新的文献求助10
1分钟前
aprise完成签到 ,获得积分10
1分钟前
卑微学术人完成签到 ,获得积分10
1分钟前
烟花应助爱听歌笑寒采纳,获得10
1分钟前
CodeCraft应助郭497采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
lsx完成签到,获得积分10
2分钟前
Jasper应助爱听歌笑寒采纳,获得10
2分钟前
轻松小张完成签到,获得积分10
2分钟前
2分钟前
3分钟前
魔幻的妖丽完成签到 ,获得积分10
3分钟前
cxm完成签到 ,获得积分10
3分钟前
andrele发布了新的文献求助10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
FashionBoy应助天真的雁露采纳,获得10
3分钟前
4分钟前
4分钟前
火星完成签到 ,获得积分10
4分钟前
天边道士完成签到 ,获得积分10
4分钟前
蓝雪花葱发布了新的文献求助30
4分钟前
4分钟前
4分钟前
郭497发布了新的文献求助10
4分钟前
科研通AI5应助天真的雁露采纳,获得10
4分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360038
捐赠科研通 3068736
什么是DOI,文献DOI怎么找? 1685237
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766033