生物分子
粒子(生态学)
纳米颗粒
纳米技术
化学物理
格子(音乐)
化学
材料科学
物理
生物
生态学
声学
作者
Yuzhi Shi,Sha Xiong,Yi Zhang,L. K. Chin,Yan-Yu Chen,J. B. Zhang,T. H. Zhang,W. Ser,A. Larrson,Sierin Lim,Jing Wu,Tianning Chen,Zhen Yang,Yameng Hao,Bo Liedberg,P. H. Yap,Kean Wang,Din Ping Tsai,Cheng‐Wei Qiu,A. Q. Liu
标识
DOI:10.1038/s41467-018-03156-5
摘要
Particle trapping and binding in optical potential wells provide a versatile platform for various biomedical applications. However, implementation systems to study multi-particle contact interactions in an optical lattice remain rare. By configuring an optofluidic lattice, we demonstrate the precise control of particle interactions and functions such as controlling aggregation and multi-hopping. The mean residence time of a single particle is found considerably reduced from 7 s, as predicted by Kramer's theory, to 0.6 s, owing to the mechanical interactions among aggregated particles. The optofluidic lattice also enables single-bacteria-level screening of biological binding agents such as antibodies through particle-enabled bacteria hopping. The binding efficiency of antibodies could be determined directly, selectively, quantitatively and efficiently. This work enriches the fundamental mechanisms of particle kinetics and offers new possibilities for probing and utilising unprecedented biomolecule interactions at single-bacteria level.
科研通智能强力驱动
Strongly Powered by AbleSci AI