Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data

环境科学 专题制图器 遥感 蒸散量 中分辨率成像光谱仪 干旱 涡度相关法 图像分辨率 土地覆盖 水文学(农业) 卫星图像 土地利用 卫星 地理 地质学 生态系统 岩土工程 航空航天工程 人工智能 古生物学 土木工程 工程类 生物 计算机科学 生态学
作者
Yanfei Ma,Shaomin Liu,Lisheng Song,Ziwei Xu,Yaling Liu,Tongren Xu,Zhongli Zhu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:216: 715-734 被引量:160
标识
DOI:10.1016/j.rse.2018.07.019
摘要

The estimation of land-surface evapotranspiration (ET) at high spatial and temporal resolutions is important for management and planning of agricultural water resources, but available remote sensing data generally have either high spatial resolution or high temporal resolution. To overcome this limitation, we evaluated the use of a data fusion scheme, Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), to determine the surface parameters needed to estimate daily ET at a Landsat-like scale (100 m). In particular, we fused Moderate Resolution Imaging Spectroradiometer (MODIS) data with Landsat Enhanced Thematic Mapper Plus (ETM+) data in analysis of the Heihe River Basin (HRB), an arid region of Northwest China. The surface parameters were then used to drive the revised Surface Energy Balance System (SEBS) model to estimate daily ET at a spatial resolution of 100 m for this an arid irrigation area during the crop growth period (April to October) in 2012. The results showed that the daily ET estimates had a mean absolute percent error (MAPE) of 12% and a root mean square error (RMSE) of 0.81 mm/day relative to ground measurements from 18 eddy covariance (EC) sites in the study area. The validation results indicated good accuracy for land cover types of maize and vegetables, a slight overestimation for residential and wetland sites, and a slight underestimation for orchard site. Our comparison of the input parameter fusion approach (IPFA) and the ET fusion approach (ETFA) with field measurements indicated the IPFA was superior than the ETFA for land surfaces with high spatial heterogeneity. Furthermore, our high spatiotemporal ET estimates indicated that irrigation water efficiencies of the irrigation districts (mean: 70%) and villages (mean: 62%) had large spatial heterogeneity. These results point to the need for calculating ET at a high spatiotemporal resolution for monitoring and improving irrigation water efficiency at local scales. Our findings suggest that the proposed framework of estimating daily ET at a Landsat-like scale using multi-source data may also be applicable to other heterogeneous landscapes by providing a foundation for management of water resources at the basin or finer scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
加纳加纳乔完成签到 ,获得积分10
1秒前
1秒前
T1kz4完成签到,获得积分10
1秒前
sunyz应助Lee采纳,获得10
2秒前
酷酷的滕完成签到 ,获得积分10
3秒前
鼠鼠叫猪可肥完成签到,获得积分10
4秒前
iW完成签到 ,获得积分10
4秒前
淋湿的雨完成签到 ,获得积分10
7秒前
板凳儿cc完成签到,获得积分10
7秒前
单薄树叶完成签到,获得积分10
8秒前
mochen0722完成签到,获得积分10
8秒前
王雨薇完成签到,获得积分10
8秒前
李建科完成签到,获得积分10
8秒前
和谐成协完成签到,获得积分10
8秒前
10秒前
开天神秀完成签到,获得积分10
10秒前
Sue完成签到 ,获得积分10
10秒前
C2750完成签到,获得积分10
11秒前
Thien应助霸气咖啡豆采纳,获得10
11秒前
jiangcai完成签到,获得积分10
11秒前
xiaoxin完成签到,获得积分10
11秒前
David完成签到 ,获得积分10
12秒前
12秒前
彼得大帝发布了新的文献求助10
13秒前
流流124141完成签到,获得积分10
14秒前
111111完成签到,获得积分10
14秒前
Mp4完成签到 ,获得积分10
14秒前
八百标兵发布了新的文献求助10
16秒前
风中黎昕完成签到 ,获得积分10
17秒前
gj完成签到,获得积分10
18秒前
jackie完成签到,获得积分10
18秒前
陶醉完成签到,获得积分10
18秒前
刘明坤完成签到,获得积分20
19秒前
FashionBoy应助知性的问玉采纳,获得10
19秒前
我是大美女完成签到,获得积分10
19秒前
刘帅关注了科研通微信公众号
21秒前
jj完成签到,获得积分10
23秒前
sure完成签到 ,获得积分10
23秒前
溪与芮行完成签到 ,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816002
求助须知:如何正确求助?哪些是违规求助? 3359464
关于积分的说明 10402883
捐赠科研通 3077360
什么是DOI,文献DOI怎么找? 1690292
邀请新用户注册赠送积分活动 813716
科研通“疑难数据库(出版商)”最低求助积分说明 767743