Individual differences in distributional learning for speech: What's ideal for ideal observers?

声音 分类 对比度(视觉) 感知 元音 发声时间 差异(会计) 心理学 言语感知 提示语 计算机科学 语音识别 认知心理学 人工智能 会计 神经科学 业务
作者
Nicholas R. Monto,Rachel M. Theodore
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:145 (3_Supplement): 1913-1913 被引量:2
标识
DOI:10.1121/1.5101948
摘要

Research demonstrates that efficient speech perception is supported by listeners’ ability to dynamically modify the mapping to speech sounds to reflect cumulative experience with talkers’ input distributions. Here we test the hypothesis that higher-level receptive language ability is linked to adaptation to low-level distributional cues in speech input. Listeners completed two blocks of phonetic categorization for stimuli that differed in voice-onset-time (VOT), a probabilistic cue to the voicing contrast in English stop consonants. In each block, two distributions were presented, one specifying /g/ and one specifying /k/. Across the two blocks, variance of the input distributions was manipulated to be either narrow or wide, reflecting distributions that were relatively more to relatively less consistent, respectively, in terms of how VOT cued the voicing contrast. As predicted by ideal observer computational frameworks, the participants in the aggregate showed steeper identification slopes for consistent compared to inconsistent input distributions. However, the magnitude of learning showed wide individual variability, which was predicted by receptive language ability as measured using standardized assessments. Individuals with poorer receptive language scores showed diminished distributional learning due to a failure to capitalize on consistent input distributions; instead, their perceptual decisions showed instability even the face of acoustic-phonetic certainty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Winter采纳,获得10
1秒前
2秒前
机灵柚子应助超帅千万采纳,获得20
2秒前
2秒前
2秒前
4秒前
明哥完成签到,获得积分10
6秒前
ladysansan发布了新的文献求助80
7秒前
8秒前
9秒前
我是老大应助执着的以晴采纳,获得20
10秒前
云136完成签到,获得积分10
10秒前
11秒前
fdsfd发布了新的文献求助10
13秒前
ding应助zky采纳,获得10
15秒前
pihou应助海的呼唤采纳,获得10
15秒前
16秒前
17秒前
肖旻发布了新的文献求助10
17秒前
dengdeng发布了新的文献求助30
18秒前
Kasom完成签到 ,获得积分10
19秒前
19秒前
19秒前
达乐发布了新的文献求助10
21秒前
木子发布了新的文献求助10
22秒前
后会无期完成签到,获得积分10
22秒前
23秒前
25秒前
26秒前
qiqi完成签到 ,获得积分10
27秒前
耿耿完成签到 ,获得积分10
27秒前
Winter完成签到,获得积分10
28秒前
lhy完成签到,获得积分10
29秒前
30秒前
孙刚完成签到 ,获得积分10
30秒前
31秒前
32秒前
Pony发布了新的文献求助10
35秒前
Neo应助JiadePeng采纳,获得10
35秒前
冷静映寒发布了新的文献求助10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171129
求助须知:如何正确求助?哪些是违规求助? 3706599
关于积分的说明 11695134
捐赠科研通 3392446
什么是DOI,文献DOI怎么找? 1860702
邀请新用户注册赠送积分活动 920531
科研通“疑难数据库(出版商)”最低求助积分说明 832740