VerifyNet: Secure and Verifiable Federated Learning

计算机科学 正确性 可验证秘密共享 云计算 计算机安全 遮罩(插图) 对手 过程(计算) 联合学习 信息隐私 协议(科学) 保密 加密 人工智能 算法 医学 操作系统 艺术 病理 视觉艺术 集合(抽象数据类型) 程序设计语言 替代医学
作者
Guowen Xu,Hongwei Li,Sen Liu,Kan Yang,Xiaodong Lin
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 911-926 被引量:372
标识
DOI:10.1109/tifs.2019.2929409
摘要

As an emerging training model with neural networks, federated learning has received widespread attention due to its ability to update parameters without collecting users' raw data. However, since adversaries can track and derive participants' privacy from the shared gradients, federated learning is still exposed to various security and privacy threats. In this paper, we consider two major issues in the training process over deep neural networks (DNNs): 1) how to protect user's privacy (i.e., local gradients) in the training process and 2) how to verify the integrity (or correctness) of the aggregated results returned from the server. To solve the above problems, several approaches focusing on secure or privacy-preserving federated learning have been proposed and applied in diverse scenarios. However, it is still an open problem enabling clients to verify whether the cloud server is operating correctly, while guaranteeing user's privacy in the training process. In this paper, we propose VerifyNet, the first privacy-preserving and verifiable federated learning framework. In specific, we first propose a double-masking protocol to guarantee the confidentiality of users' local gradients during the federated learning. Then, the cloud server is required to provide the Proof about the correctness of its aggregated results to each user. We claim that it is impossible that an adversary can deceive users by forging Proof, unless it can solve the NP-hard problem adopted in our model. In addition, VerifyNet is also supportive of users dropping out during the training process. The extensive experiments conducted on real-world data also demonstrate the practical performance of our proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
思源应助终澈采纳,获得10
4秒前
陈玥桦完成签到,获得积分10
4秒前
roaring发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
ll发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
小周发布了新的文献求助10
11秒前
11秒前
12秒前
自觉大碗发布了新的文献求助10
12秒前
苹果问晴发布了新的文献求助10
12秒前
jellorio完成签到,获得积分10
13秒前
13秒前
FengXisong发布了新的文献求助10
15秒前
CYY发布了新的文献求助10
15秒前
jellorio发布了新的文献求助10
15秒前
等待盼雁发布了新的文献求助10
18秒前
晓巨人完成签到,获得积分20
18秒前
终澈发布了新的文献求助10
19秒前
19秒前
万能图书馆应助roaring采纳,获得10
20秒前
辛勤又蓝完成签到 ,获得积分10
20秒前
英姑应助自觉大碗采纳,获得10
20秒前
21秒前
whisper完成签到,获得积分10
22秒前
科研通AI2S应助liuzengzhang666采纳,获得10
22秒前
研友_VZG7GZ应助103921wjk采纳,获得10
23秒前
ALY12345发布了新的文献求助10
23秒前
Mastertry完成签到,获得积分10
23秒前
科研通AI5应助jellorio采纳,获得10
24秒前
Landau发布了新的文献求助10
26秒前
dx完成签到,获得积分10
28秒前
29秒前
自觉大碗完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358