VerifyNet: Secure and Verifiable Federated Learning

计算机科学 正确性 可验证秘密共享 云计算 计算机安全 遮罩(插图) 对手 过程(计算) 联合学习 信息隐私 协议(科学) 保密 人工智能 算法 集合(抽象数据类型) 程序设计语言 医学 艺术 替代医学 病理 视觉艺术 操作系统
作者
Guowen Xu,Hongwei Li,Sen Liu,Kan Yang,Xiaodong Lin
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 911-926 被引量:581
标识
DOI:10.1109/tifs.2019.2929409
摘要

As an emerging training model with neural networks, federated learning has received widespread attention due to its ability to update parameters without collecting users' raw data. However, since adversaries can track and derive participants' privacy from the shared gradients, federated learning is still exposed to various security and privacy threats. In this paper, we consider two major issues in the training process over deep neural networks (DNNs): 1) how to protect user's privacy (i.e., local gradients) in the training process and 2) how to verify the integrity (or correctness) of the aggregated results returned from the server. To solve the above problems, several approaches focusing on secure or privacy-preserving federated learning have been proposed and applied in diverse scenarios. However, it is still an open problem enabling clients to verify whether the cloud server is operating correctly, while guaranteeing user's privacy in the training process. In this paper, we propose VerifyNet, the first privacy-preserving and verifiable federated learning framework. In specific, we first propose a double-masking protocol to guarantee the confidentiality of users' local gradients during the federated learning. Then, the cloud server is required to provide the Proof about the correctness of its aggregated results to each user. We claim that it is impossible that an adversary can deceive users by forging Proof, unless it can solve the NP-hard problem adopted in our model. In addition, VerifyNet is also supportive of users dropping out during the training process. The extensive experiments conducted on real-world data also demonstrate the practical performance of our proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助辛紫璇采纳,获得10
1秒前
1秒前
2秒前
尼克11发布了新的文献求助10
2秒前
2秒前
曾经的刺猬完成签到,获得积分10
3秒前
搜集达人应助nightmoonsun采纳,获得10
3秒前
一二三完成签到,获得积分10
4秒前
在水一方应助吃饭饭采纳,获得10
4秒前
结实康发布了新的文献求助10
4秒前
吴所谓完成签到,获得积分10
4秒前
69qq发布了新的文献求助10
4秒前
5秒前
5秒前
小二郎应助pikachu采纳,获得10
5秒前
罗婉婷发布了新的文献求助10
5秒前
6秒前
一米阳光发布了新的文献求助10
6秒前
qwe发布了新的文献求助10
6秒前
哭泣鼠标完成签到 ,获得积分10
6秒前
skyveblue完成签到,获得积分10
7秒前
诺非完成签到,获得积分10
7秒前
Leety完成签到 ,获得积分10
7秒前
超级寻双完成签到 ,获得积分10
7秒前
思源应助LEMON采纳,获得10
7秒前
ChenK完成签到,获得积分10
7秒前
8秒前
8秒前
赛特新思完成签到,获得积分10
8秒前
打打应助刘思佳采纳,获得10
8秒前
Qintt完成签到 ,获得积分10
8秒前
faye发布了新的文献求助10
8秒前
chengya发布了新的文献求助10
9秒前
yao完成签到,获得积分20
9秒前
yatou5651发布了新的文献求助10
9秒前
李一亮发布了新的文献求助10
9秒前
10秒前
学霸土豆发布了新的文献求助10
10秒前
香蕉觅云应助舒心的幻天采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068161
求助须知:如何正确求助?哪些是违规求助? 4289857
关于积分的说明 13365461
捐赠科研通 4109571
什么是DOI,文献DOI怎么找? 2250420
邀请新用户注册赠送积分活动 1255787
关于科研通互助平台的介绍 1188288