亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Compact Mask Models for Optical Projection Lithography

衍射 光学 平版印刷术 薄脆饼 波长 光刻 标量(数学) 材料科学 投影(关系代数) 物理 光电子学 计算机科学 几何学 数学 算法
作者
Viviana Agudelo Moreno
链接
摘要

The transfer of micro and nano patterns into a photosensitive material has a large number of technological applications. One of this techniques is known as optical lithography and is widely used in the fabrication process of integrated circuits (IC). The exposure, as one of the most important steps of a lithography process, has a critical influence on the dimension of the features in the fabricated IC. A mask contains the pattern that has to be replicated into the photosensitive material, which is coated on the top of a semiconductor wafer. A light source illuminates the mask, where diffraction phenomena occur. Then, the diffracted light is guided by means of an optical system to create a demagnified image of the mask. Modeling and simulation allow a deeper understanding of the image formation, in particular at small scales in the range of few wavelengths and below. One of the most important aspects for the image formation is the appropriate modeling of the light diffraction from the mask. When the mask features are larger than the wavelength of light, the scalar diffraction theory (Kirchhoff approach) yields sufficiently accurate results in the computation of the diffraction spectrum. With feature sizes smaller than or comparable to the wavelength, the scalar approximation exhibits a serious limitation. It does not account for the three-dimensional mask geometry and related mask topography effects. That is why a rigorous description of the light diffraction from the mask is required. The propagation of the light through the mask can be rigorously computed using the Maxwells equations. The effort to accomplish a highly accurate description of the diffracted field, introduces a huge computational expense. As a consequence, innovative modeling techniques are challenged to compromise accuracy and speed in the computation of the diffracted field, as well as in the computation of the imaging. So-called compact mask models speed up the mask diffraction spectrum and imaging computation, considering the threedimensional mask geometry and related mask topography effects. These compact mask models introduce methods to improve the accuracy of the Kirchhoffbased imaging model. This is done by means of a systematic modification of the scalar diffraction spectrum or the mask geometry, in order to yield similar results as the fully rigorous simulations. In this work, three novel compact mask models are formulated. These approaches are considered in the spatial frequency domain. First, a Jones pupil function is introduced in the projector to describe amplitude, phase and polarization effects, which are introduced by the mask (pupil filtering model). Second, a correction is performed directly on the scalar diffraction spectrum, to tune the diffraction orders that are captured by the pupil of the optical projection system (spectrum correction model). Finally, an artificial neural network approach is considered. The artificial neural networks are trained using the scalar diffraction spectrum as input and the rigorous spectrum as target. The outcome of this training process is a neural network capable of reproducing a diffraction spectrum that approximates the rigorous spectrum, which is obtained from electromagnetic field simulations. The proposed compact mask models account for and compensate mask topography- induced effects even at image planes out of focus. This allows to preserve the accuracy of the image computation in lithography simulations, at a reasonable computational cost compared to the rigorous mask model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的诗柳完成签到 ,获得积分10
1秒前
7秒前
李爱国应助solarlad采纳,获得10
25秒前
35秒前
星星发布了新的文献求助10
38秒前
40秒前
50秒前
科研通AI2S应助星星采纳,获得10
50秒前
仙女完成签到 ,获得积分10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
科目三应助小刘采纳,获得10
1分钟前
Georgechan完成签到,获得积分10
1分钟前
顾矜应助Kunhui采纳,获得30
1分钟前
1分钟前
愉快的犀牛完成签到 ,获得积分10
1分钟前
酷波er应助Wsssss采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
solarlad发布了新的文献求助10
2分钟前
北雨发布了新的文献求助10
2分钟前
2分钟前
ki完成签到 ,获得积分10
2分钟前
yx发布了新的文献求助10
2分钟前
amengptsd完成签到,获得积分10
2分钟前
2分钟前
小刘发布了新的文献求助10
2分钟前
2分钟前
kk发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922054
求助须知:如何正确求助?哪些是违规求助? 3466826
关于积分的说明 10945341
捐赠科研通 3195734
什么是DOI,文献DOI怎么找? 1765796
邀请新用户注册赠送积分活动 855756
科研通“疑难数据库(出版商)”最低求助积分说明 795077