A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification

人工智能 计算机科学 机器学习 深度学习 上下文图像分类 任务(项目管理) 建筑 人工神经网络 图像(数学) 工程类 艺术 视觉艺术 系统工程
作者
Sheldon Mascarenhas,Mukul Agarwal
标识
DOI:10.1109/centcon52345.2021.9687944
摘要

Artificial Intelligence advancements have come a long way over the past twenty years. Rapid developments in AI have given birth to a trending topic called machine learning. Machine learning enables us to use algorithms and programming techniques to extract, understand and train data. Machine learning led to the creation of a concept called deep learning which uses algorithms to create an artificial neural network and use it to develop and learn, based on which it makes intuitive decisions by itself. Image classification is a task where we classify the images into sets of different categories, which when performed using deep learning increases business productivity by saving time and manpower. In this paper, we intend to determine which model of the architecture of the Convoluted Neural Network (CNN) can be used to solve a real-life problem of product classification to help optimize pricing comparison. We have compared the VGG16, VGG19, and ResNet50 architectures based on their accuracy while all three of these models solve the same image classification problem. We have concluded that the ResNet50 is the best architecture based on the comparison. These models have provided accuracies of 0.9667, 0.9707, and 0.9733 for VGG16, VGG19, and ResNet50 at epoch 20. The data provided is a real-life data set, sourced from a regional retailer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助MurrayQ采纳,获得10
1秒前
sx发布了新的文献求助10
5秒前
CipherSage应助samara采纳,获得10
7秒前
9秒前
10秒前
科研通AI5应助11采纳,获得10
11秒前
zhinian28发布了新的文献求助10
13秒前
Popeye完成签到,获得积分10
13秒前
sx完成签到,获得积分10
14秒前
禾禾发布了新的文献求助20
15秒前
坤坤蹦蹦跳跳完成签到,获得积分10
18秒前
天天快乐应助布灵布灵采纳,获得10
19秒前
20秒前
生动的冰岚完成签到,获得积分10
21秒前
酷波er应助Leslie采纳,获得10
22秒前
百里怡完成签到,获得积分10
24秒前
一品真意完成签到,获得积分10
24秒前
25秒前
Orange应助台琳玉采纳,获得10
26秒前
秦时明月发布了新的文献求助10
27秒前
英勇笑萍完成签到,获得积分10
28秒前
姜生在树上完成签到 ,获得积分10
30秒前
小杭杭弟发布了新的文献求助100
31秒前
LUJyyyy完成签到,获得积分10
33秒前
35秒前
orixero应助zzz采纳,获得10
35秒前
aa完成签到,获得积分10
35秒前
38秒前
止戈发布了新的文献求助50
38秒前
六沉发布了新的文献求助10
39秒前
科研通AI5应助阿德萨达采纳,获得10
40秒前
可爱的函函应助秦时明月采纳,获得10
41秒前
WN发布了新的文献求助10
41秒前
文献查找完成签到,获得积分10
42秒前
43秒前
大模型应助浅墨采纳,获得10
43秒前
43秒前
梓枫完成签到,获得积分20
43秒前
Erina完成签到 ,获得积分10
44秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816948
求助须知:如何正确求助?哪些是违规求助? 3360399
关于积分的说明 10407721
捐赠科研通 3078337
什么是DOI,文献DOI怎么找? 1690720
邀请新用户注册赠送积分活动 814023
科研通“疑难数据库(出版商)”最低求助积分说明 767985