亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the multi‐class classification of Alzheimer’s disease with machine learning‐based techniques: An EEG‐fNIRS hybridization study

脑电图 人工智能 计算机科学 模式识别(心理学) 卷积神经网络 机器学习 心理学 神经科学
作者
Thi Kieu Khanh Ho,Minhee Kim,Younghoon Jeon,Eunchan Na,Zahid Ullah,Byeong C. Kim,Kun Ho Lee,Jong‐In Song,Jae Gwan Kim,Jeonghwan Gwak
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:17 (S7) 被引量:2
标识
DOI:10.1002/alz.057565
摘要

As an incurable neurodegenerative disorder, Alzheimer's Disease (AD) is being projected to become one of the most expensive diseases for understanding the pathophysiological mechanism. Exploring alterations in the AD brain network is therefore of central importance for early and accurate diagnosis of cognitive deficits levels, yet diagnostic uncertainties exist merely confirmed by postmortem brain examination. The hybrid approach of two modalities, Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) reveals an ideal technique-derived diagnosis due to the inexpensive and noninvasive experiments coupled with the reliability and versatility that make it highly desirable for AD multi-class classification tasks.In this study, the hybrid EEG-fNIRS was employed in constructing the classification machine learning (ML)-based models to categorize four subject groups, including healthy controls (HC) and three AD patient classes. First, a concurrent EEG-fNIRS setup was utilized to record data from 41 subjects during the Oddball - a cognitive ability test and 1-back - a memory ability test. Second, while fNIRS features were computed and extracted, the event-related spectral perturbation (ERSP) features measuring the average dynamic changes in amplitude of three main EEG frequency bands were extracted. Third, a conventional neural network and a hybrid deep Convolutional Neural Network (CNN) - Long Short-Term Memory Network (LSTM) was built for the multi-class classification using the fNIRS and EEG features, respectively. To boost the classification accuracy, the output of different models was combined by majority voting methods.The hybrid EEG-fNIRS feature set was able to achieve a higher accuracy (71.01% ± 0.004) by combing their complementary properties, compared to using EEG (66.35% ± 0.016) or fNIRS (67.15% ± 0.017) alone. In addition, fNIRS and ERSP feature patterns displayed a significant difference between subject groups during the Oddball and 1-back experimental tasks. Thus, the feature-level ensemble shows a great ability to understand neurophysiological AD status and its related symptoms and develop a syndrome-specific diagnostic tool for our future works.These findings demonstrate the potential of the hybrid EEG-fNIRS systems to enhance the AD diagnosis and assessment process and the capability of ML techniques to facilitate further AD classification studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小郭子完成签到,获得积分10
2秒前
深情安青应助小郭子采纳,获得10
7秒前
15秒前
ypyue完成签到,获得积分10
18秒前
18秒前
jeff发布了新的文献求助10
20秒前
ypyue发布了新的文献求助10
22秒前
ffl完成签到 ,获得积分10
23秒前
我是老大应助有人采纳,获得30
26秒前
今后应助ypyue采纳,获得10
38秒前
科目三应助Howeveran采纳,获得10
43秒前
科研通AI5应助番番采纳,获得10
50秒前
54秒前
zjx完成签到,获得积分10
55秒前
科研通AI5应助可靠的寒风采纳,获得10
58秒前
58秒前
Howeveran发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CC发布了新的文献求助10
1分钟前
preepero发布了新的文献求助10
1分钟前
preepero完成签到,获得积分10
1分钟前
zzhang完成签到,获得积分20
1分钟前
脑洞疼应助CC采纳,获得10
1分钟前
爱莉希雅完成签到 ,获得积分10
1分钟前
科研通AI5应助zzhang采纳,获得10
1分钟前
1分钟前
盐植物完成签到,获得积分10
1分钟前
四氧化三铁完成签到,获得积分10
1分钟前
hmf1995完成签到 ,获得积分10
2分钟前
芝麻完成签到,获得积分0
2分钟前
鱼块完成签到 ,获得积分10
2分钟前
羽生结弦的馨馨完成签到,获得积分10
2分钟前
Camelia完成签到,获得积分10
2分钟前
NagatoYuki完成签到,获得积分10
2分钟前
2分钟前
bingbing完成签到,获得积分10
2分钟前
Lancet发布了新的文献求助10
2分钟前
浅晨发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333675
关于积分的说明 10262958
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673602
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760504