A reinforcement learning level-based particle swarm optimization algorithm for large-scale optimization

强化学习 局部最优 水准点(测量) 粒子群优化 计算机科学 数学优化 趋同(经济学) 人口 多群优化 比例(比率) 元启发式 最优化问题 人工智能 算法 数学 物理 人口学 大地测量学 量子力学 社会学 经济增长 经济 地理
作者
Feng Wang,Xujie Wang,Shilei Sun
出处
期刊:Information Sciences [Elsevier]
卷期号:602: 298-312 被引量:177
标识
DOI:10.1016/j.ins.2022.04.053
摘要

Large-scale optimization problems (LSOPs) have drawn researchers’ increasing attention since their resemblance to real-world problems. However, due to the complex search space and massive local optima, it is challenging to simultaneously guarantee the diversity and convergence of the algorithms. As a widely used evolutionary algorithm with fast convergence, particle swarm optimization (PSO) shows competitive performances on some LSOPs. Nevertheless, it can easily get trapped into local optima. Overcoming the complexity of LSOPs and improving search efficiency have become vital issues. The reinforcement learning method has proven to be an effective technique in self-adaptive adjustment, which can help search for better results in large-scale solution space more effectively. In this paper, we propose a large-scale optimization algorithm called reinforcement learning level-based particle swarm optimization algorithm (RLLPSO). In RLLPSO, a level-based population structure is constructed to improve population diversity. A reinforcement learning strategy for level number control is employed to help improve the search efficiency of RLLPSO. To further enhance the convergence ability of RLLPSO, a level competition mechanism is introduced. The experimental results from two large-scale benchmark test suites demonstrate that, compared with five state-of-the-art large-scale optimization algorithms, RLLPSO shows superiority in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偏遇发布了新的文献求助10
刚刚
Lucas应助寻悦采纳,获得10
刚刚
刚刚
JamesPei应助王佩洋采纳,获得10
1秒前
轻松小白菜关注了科研通微信公众号
1秒前
1秒前
1秒前
悦耳觅荷发布了新的文献求助10
2秒前
yang发布了新的文献求助10
2秒前
沫沫发布了新的文献求助10
2秒前
2秒前
阳光的yuyu发布了新的文献求助10
2秒前
2秒前
张兰兰发布了新的文献求助10
3秒前
3秒前
4秒前
哭泣代容发布了新的文献求助10
4秒前
yangz完成签到,获得积分10
4秒前
冯大哥完成签到,获得积分10
4秒前
言君发布了新的文献求助10
4秒前
WeiX__Chen完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
星辰大海应助bab采纳,获得10
7秒前
7秒前
8秒前
8秒前
yangz发布了新的文献求助10
8秒前
韦雪莲完成签到 ,获得积分10
8秒前
9秒前
游旭勇完成签到,获得积分20
9秒前
10秒前
悦耳觅荷完成签到,获得积分10
10秒前
CodeCraft应助史淼荷采纳,获得30
10秒前
英吉利25发布了新的文献求助30
10秒前
11秒前
今后应助yang采纳,获得10
12秒前
连仁兄发布了新的文献求助10
12秒前
ling361完成签到,获得积分0
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458