Studying Complex Evolution of Hyperelastic Materials under External Field Stimuli using Artificial Neural Networks with Spatiotemporal Features in a Small‐Scale Dataset

计算机科学 比例(比率) 领域(数学) 人工智能 硅橡胶 实验数据 深度学习 人工神经网络 机器学习 材料科学 数学 物理 统计 量子力学 纯数学 复合材料
作者
Songlin Yu,Haiyang Chai,Yuqi Xiong,Ming Kang,Chengzhen Geng,Yu Liu,Yanqiu Chen,Yaling Zhang,Qian Zhang,Changlin Li,Hao Wei,Yuhang Zhao,Fengmei Yu,A. Lu
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (26) 被引量:19
标识
DOI:10.1002/adma.202200908
摘要

Deep-learning (DL) methods, in consideration of their excellence in dealing with highly complex structure-performance relationships for materials, are expected to become a new design paradigm for breakthroughs in material performance. However, in most cases, it is impractical to collect massive-scale experimental data or open-source theoretical databases to support training DL models with sufficient prediction accuracy. In a dataset consisting of 483 porous silicone rubber observations generated via ink-writing additive manufacturing, this work demonstrates that constructing low-dimensional, accurate descriptors is the prerequisite for obtaining high-precision DL models based on small experimental datasets. On this basis, a unique convolutional bidirectional long short-term memory model with spatiotemporal features extraction capability is designed, whose hierarchical learning mechanism further reduces the requirement for the amount of data by taking full advantage of data information. The proposed approach can be expected as a powerful tool for innovative material design on small experimental datasets, which can also be used to explore the evolutionary mechanisms of the structures and properties of materials under complex working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助调皮的海之采纳,获得10
刚刚
郭惠智发布了新的文献求助10
3秒前
顺利安柏发布了新的文献求助10
4秒前
5秒前
6秒前
CC2333完成签到,获得积分10
6秒前
8秒前
9秒前
9秒前
10秒前
lxd发布了新的文献求助10
12秒前
12秒前
汉堡包应助地表飞猪采纳,获得30
12秒前
real339完成签到,获得积分10
13秒前
arelia关注了科研通微信公众号
14秒前
888完成签到 ,获得积分10
14秒前
Bunei发布了新的文献求助10
15秒前
科研通AI2S应助dawnn采纳,获得10
15秒前
16秒前
鱼可关注了科研通微信公众号
16秒前
烂漫的乌发布了新的文献求助10
16秒前
失眠万仇完成签到,获得积分10
17秒前
斯文听寒完成签到 ,获得积分10
17秒前
勤劳的筝发布了新的文献求助10
18秒前
丘比特应助郭惠智采纳,获得10
18秒前
18秒前
19秒前
19秒前
21秒前
来了完成签到,获得积分10
21秒前
失眠万仇发布了新的文献求助10
21秒前
哎呀妈呀完成签到,获得积分10
24秒前
马里奥发布了新的文献求助10
24秒前
hy发布了新的文献求助10
24秒前
25秒前
yi发布了新的文献求助10
25秒前
25秒前
漂亮的不言完成签到 ,获得积分10
26秒前
duotianzhiyi完成签到,获得积分10
27秒前
dawnn发布了新的文献求助10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810555
求助须知:如何正确求助?哪些是违规求助? 3355069
关于积分的说明 10373953
捐赠科研通 3071569
什么是DOI,文献DOI怎么找? 1687034
邀请新用户注册赠送积分活动 811374
科研通“疑难数据库(出版商)”最低求助积分说明 766626