Multistage Spatio-Temporal Networks for Robust Sketch Recognition

计算机科学 人工智能 循环神经网络 模式识别(心理学) 卷积神经网络 素描 特征(语言学) 人工神经网络 算法 语言学 哲学
作者
Hanhui Li,Xudong Jiang,Boliang Guan,Ruomei Wang,Nadia Magnenat Thalmann
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2683-2694 被引量:16
标识
DOI:10.1109/tip.2022.3160240
摘要

Sketch recognition relies on two types of information, namely, spatial contexts like the local structures in images and temporal contexts like the orders of strokes. Existing methods usually adopt convolutional neural networks (CNNs) to model spatial contexts, and recurrent neural networks (RNNs) for temporal contexts. However, most of them combine spatial and temporal features with late fusion or single-stage transformation, which is prone to losing the informative details in sketches. To tackle this problem, we propose a novel framework that aims at the multi-stage interactions and refinements of spatial and temporal features. Specifically, given a sketch represented by a stroke array, we first generate a temporal-enriched image (TEI), which is a pseudo-color image retaining the temporal order of strokes, to overcome the difficulty of CNNs in leveraging temporal information. We then construct a dual-branch network, in which a CNN branch and a RNN branch are adopted to process the stroke array and the TEI respectively. In the early stages of our network, considering the limited ability of RNNs in capturing spatial structures, we utilize multiple enhancement modules to enhance the stroke features with the TEI features. While in the last stage of our network, we propose a spatio-temporal enhancement module that refines stroke features and TEI features in a joint feature space. Furthermore, a bidirectional temporal-compatible unit that adaptively merges features in opposite temporal orders, is proposed to help RNNs tackle abrupt strokes. Comprehensive experimental results on QuickDraw and TU-Berlin demonstrate that the proposed method is a robust and efficient solution for sketch recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
安非发布了新的文献求助10
3秒前
3秒前
3秒前
6秒前
ydj发布了新的文献求助20
6秒前
木槿发布了新的文献求助10
6秒前
7秒前
lvsehx发布了新的文献求助10
7秒前
ZeSir发布了新的文献求助10
9秒前
10秒前
袁宁宁静发布了新的文献求助10
11秒前
SciGPT应助YOUNG-M采纳,获得10
14秒前
小蘑菇应助安非采纳,获得10
14秒前
kokoko完成签到,获得积分10
15秒前
17秒前
赘婿应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
18秒前
wanci应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
18秒前
思源应助科研通管家采纳,获得10
18秒前
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
19秒前
20秒前
椰子完成签到,获得积分10
20秒前
情怀应助第七个星球采纳,获得10
21秒前
22秒前
完美世界应助lzzj采纳,获得10
22秒前
yuu发布了新的文献求助10
22秒前
青儿发布了新的文献求助30
24秒前
24秒前
24秒前
26秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047046
求助须知:如何正确求助?哪些是违规求助? 3584852
关于积分的说明 11393246
捐赠科研通 3312136
什么是DOI,文献DOI怎么找? 1822485
邀请新用户注册赠送积分活动 894474
科研通“疑难数据库(出版商)”最低求助积分说明 816316