SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection

计算机科学 编码器 变压器 卷积神经网络 人工智能 增采样 计算机视觉 模式识别(心理学) 图像(数学) 电压 工程类 电气工程 操作系统
作者
Cui Zhang,Liejun Wang,Shuli Cheng,Yongming Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:216
标识
DOI:10.1109/tgrs.2022.3160007
摘要

Convolutional neural network (CNN) can extract effective semantic features, so it was widely used for remote sensing image change detection (CD) in the latest years. CNN has acquired great achievements in the field of CD, but due to the intrinsic locality of convolution operation, it could not capture global information in space-time. The transformer was proposed in recent years and it can effectively extract global information, so it was used to solve computer vision (CV) tasks and achieved amazing success. In this article, we design a pure transformer network with Siamese U-shaped structure to solve CD problems and name it SwinSUNet. SwinSUNet contains encoder, fusion, and decoder, and all of them use Swin transformer blocks as basic units. Encoder has a Siamese structure based on hierarchical Swin transformer, so encoder can process bitemporal images in parallel and extract their multiscale features. Fusion is mainly responsible for the merge operation of the bitemporal features generated by the encoder. Like encoder, the decoder is also based on hierarchical Swin transformer. Different from the encoder, the decoder uses upsampling and merging (UM) block and Swin transformer blocks to recover the details of the change information. The encoder uses patch merging and Swin transformer blocks to generate effective semantic features. After the sequential process of these three modules, SwinSUNet will output the change maps. We did expensive experiments on four CD datasets, and in these experiments, SwinSUNet achieved better results than other related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助cyy1226采纳,获得10
刚刚
勤恳风华完成签到,获得积分10
3秒前
starro完成签到 ,获得积分10
12秒前
科研通AI2S应助gege采纳,获得10
12秒前
周em12_完成签到,获得积分10
17秒前
kosmos完成签到,获得积分10
21秒前
wangfang0228完成签到 ,获得积分10
23秒前
24秒前
24秒前
小赞芽完成签到,获得积分10
25秒前
28秒前
llchen完成签到,获得积分0
29秒前
30秒前
无算浮白发布了新的文献求助10
30秒前
英俊的铭应助cheng采纳,获得10
32秒前
重要的菲鹰完成签到 ,获得积分10
33秒前
忽闻水发布了新的文献求助10
35秒前
无算浮白完成签到,获得积分10
35秒前
36秒前
斗鱼飞鸟和俞完成签到,获得积分10
37秒前
小广完成签到,获得积分10
37秒前
王艺玮关注了科研通微信公众号
38秒前
retard完成签到 ,获得积分10
39秒前
42秒前
风趣秋白完成签到,获得积分10
42秒前
retard关注了科研通微信公众号
43秒前
顾矜应助gege采纳,获得10
44秒前
无花果应助科研通管家采纳,获得30
44秒前
隐形曼青应助科研通管家采纳,获得10
44秒前
慕青应助科研通管家采纳,获得10
44秒前
44秒前
汉堡包应助科研通管家采纳,获得10
44秒前
科目三应助科研通管家采纳,获得10
44秒前
44秒前
44秒前
cyy1226发布了新的文献求助10
48秒前
cheng发布了新的文献求助10
48秒前
shiming完成签到 ,获得积分10
49秒前
qiao应助didi采纳,获得10
51秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781313
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228480
捐赠科研通 3041848
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751