A Comprehensive Survey of Scene Graphs: Generation and Application

计算机科学 人工智能 计算机视觉
作者
Xiaojun Chang,Pengzhen Ren,Pengfei Xu,Zhihui Li,Xiaojiang Chen,Alex Hauptmann
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (1): 1-26 被引量:177
标识
DOI:10.1109/tpami.2021.3137605
摘要

Scene graph is a structured representation of a scene that can clearly express the objects, attributes, and relationships between objects in the scene. As computer vision technology continues to develop, people are no longer satisfied with simply detecting and recognizing objects in images; instead, people look forward to a higher level of understanding and reasoning about visual scenes. For example, given an image, we want to not only detect and recognize objects in the image, but also know the relationship between objects (visual relationship detection), and generate a text description (image captioning) based on the image content. Alternatively, we might want the machine to tell us what the little girl in the image is doing (Visual Question Answering (VQA)), or even remove the dog from the image and find similar images (image editing and retrieval), etc. These tasks require a higher level of understanding and reasoning for image vision tasks. The scene graph is just such a powerful tool for scene understanding. Therefore, scene graphs have attracted the attention of a large number of researchers, and related research is often cross-modal, complex, and rapidly developing. However, no relatively systematic survey of scene graphs exists at present. To this end, this survey conducts a comprehensive investigation of the current scene graph research. More specifically, we first summarized the general definition of the scene graph, then conducted a comprehensive and systematic discussion on the generation method of the scene graph (SGG) and the SGG with the aid of prior knowledge. We then investigated the main applications of scene graphs and summarized the most commonly used datasets. Finally, we provide some insights into the future development of scene graphs. We believe this will be a very helpful foundation for future research on scene graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助LuckyDing采纳,获得10
2秒前
金金发布了新的文献求助10
3秒前
青山完成签到 ,获得积分10
5秒前
共享精神应助王闪闪采纳,获得10
6秒前
XLC发布了新的文献求助10
6秒前
中科院饲养员完成签到,获得积分10
7秒前
zhangyu完成签到,获得积分10
8秒前
10秒前
哆啦A梦完成签到,获得积分10
11秒前
集力申完成签到,获得积分10
11秒前
HEIKU应助RiRi采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
16秒前
17秒前
小宋完成签到,获得积分10
18秒前
henryhc_完成签到 ,获得积分10
18秒前
研友_LMpo68完成签到 ,获得积分10
21秒前
科研长颈鹿完成签到,获得积分10
21秒前
珈蓝完成签到,获得积分10
22秒前
23秒前
王闪闪发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
27秒前
Rosie完成签到,获得积分10
27秒前
和谐的冷亦完成签到,获得积分10
28秒前
30秒前
31秒前
鸣风发布了新的文献求助10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781113
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227650
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734