Machine learning-based radiomic computed tomography phenotyping of thymic epithelial tumors: Predicting pathological and survival outcomes

医学 病态的 计算机断层摄影术 放射科 病理 医学物理学
作者
Dong Tian,Hao‐Ji Yan,Haruhiko Shiiya,Masaaki Sato,Aya Shinozaki‐Ushiku,Jun Nakajima
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [Elsevier BV]
卷期号:165 (2): 502-516.e9 被引量:11
标识
DOI:10.1016/j.jtcvs.2022.05.046
摘要

For patients with thymic epithelial tumors, accurately predicting clinicopathological outcomes remains challenging. We aimed to investigate the performance of machine learning-based radiomic computed tomography phenotyping for predicting pathological (World Health Organization [WHO] type and TNM stage) and survival outcomes (overall and progression-free survival) in patients with thymic epithelial tumors.This retrospective study included patients with thymic epithelial tumors between January 2001 and January 2022. The radiomic features were extracted from preoperative unenhanced computed tomography images. After strict feature selection, random forest and random survival forest models were fitted to predict pathological and survival outcomes, respectively. The model performance was assessed by the area under the curve (AUC) and validated internally by the bootstrap method.In total, 124 patients with a median age of 61 years were included. The radiomics random forest models of WHO type and TNM stage showed satisfactory performance with an AUCWHO of 0.898 (95% CI, 0.753-1.000) and an AUCTNM of 0.766 (95% CI, 0.642-0.886). For overall survival and progression-free survival prediction, the radiomics random survival forest models showed good performance (integrated AUCs, 0.923; 95% CI, 0.691-1.000 and 0.702; 95% CI, 0.513-0.875, respectively), and the integrated AUCs increased to 0.935 (95% CI, 0.705-1.000) and 0.811 (95% CI, 0.647-0.942), respectively, when combined with clinicopathological features.Machine learning-based radiomic computed tomography phenotyping might allow for the satisfactory prediction of pathological and survival outcomes and further improve prognostic performance when integrated with clinicopathological features in patients with thymic epithelial tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
FashionBoy应助面朝大海采纳,获得10
1秒前
1秒前
冷傲迎梦发布了新的文献求助10
1秒前
1秒前
三只羊驼完成签到,获得积分10
3秒前
辣姜完成签到,获得积分10
3秒前
受伤问凝完成签到 ,获得积分10
4秒前
Orange应助热心的皮采纳,获得10
4秒前
5秒前
5秒前
白白发布了新的文献求助10
5秒前
5秒前
李健的小迷弟应助Akun采纳,获得10
5秒前
6秒前
机智灵薇完成签到,获得积分10
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
上官若男应助yuyu采纳,获得50
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
好好发布了新的文献求助10
8秒前
田様应助科研通管家采纳,获得30
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
QH完成签到,获得积分10
9秒前
9秒前
某某完成签到,获得积分10
9秒前
认真的傲柏完成签到,获得积分10
9秒前
10秒前
onecloudhere发布了新的文献求助10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093