MYB公司
莱茵衣藻
转录因子
生物
发起人
生物化学
基因
代谢途径
衣原体
细胞生物学
生物合成
基因表达
突变体
作者
Meicheng Shi,Lihua Yu,Jia-nan Shi,Jin Liu
摘要
Green algae can accumulate high levels of triacylglycerol (TAG), yet knowledge remains fragmented on the regulation of lipid metabolic pathways by transcription factors (TFs). Here, via bioinformatics and in vitro and in vivo analyses, we revealed the roles of a myeloblastosis (MYB) TF in regulating TAG accumulation in green algae. CzMYB1, an R2R3-MYB from Chromochloris zofingiensis, was transcriptionally upregulated upon TAG-inducing conditions and correlated well with many genes involved in the de novo fatty acid synthesis, fatty acid activation and desaturation, membrane lipid turnover, and TAG assembly. Most promoters of these genes were transactivated by CzMYB1 in the yeast one-hybrid assay and contained the binding elements CNGTTA that were recognized by CzMYB1 through the electrophoretic mobility shift assay. CrMYB1, a close homologue of CzMYB1 from Chlamydomonas reinhardtii that recognized similar elements for binding, also transcriptionally correlated with many lipid metabolic genes. Insertional disruption of CrMYB1 severely suppressed the transcriptional expression of CrMYB1, as well as of key lipogenic genes, and impaired TAG level considerably under stress conditions. Our results reveal that this MYB, conserved in green algae, is involved in regulating global lipid metabolic pathways for TAG biosynthesis and accumulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI