A Study on the Detection of Defects in Solar Cells and Modules in EL Images based on Artificial Intelligence

光伏系统 人工智能 计算机科学 探测器 过程(计算) 目标检测 可再生能源 工程类 模式识别(心理学) 电气工程 电信 操作系统
作者
Sun-Keun Jo,In-Doo Park,Juhee Jang,Wonwook Oh
出处
期刊:한국태양에너지학회 논문집 [The Korean Solar Energy Society]
卷期号:41 (6): 51-57 被引量:1
标识
DOI:10.7836/kses.2021.41.6.051
摘要

Currently, investment is being made in renewable energy for the transition to a low-carbon economy and society, and interest in solar energy is also increasing. In addition to the technological development of solar cells and photovoltaic (PV) modules, research in the field of convergence with artificial intelligence technology is being actively conducted. Defects occurring in the manufacturing process of solar cells and modules can be detected through electroluminescence (EL) measurements. In this study, we propose an artificial intelligence technology that can automatically detect defects in cells and modules in real time using EL image data of solar cells and modules in the manufacturing process. For EL defect detection, we propose an algorithm with high suitability in terms of speed and accuracy by applying deep learning-based object detection models and comparing and evaluating detection performance. In the case of the YOLO (you only look once) algorithm, which belongs to a one-step detector, it learns In the case of the YOLO (you only look once) algorithm, which belongs to a one-step detector, it learns through an optimization process to find information about the defect and the location information of the corresponding failure in the form of a bounding box, and then detects the failure based on this information. The introduction of a deep learning-based defect detection model in the manufacturing process is expected to reduce the time required for defect detection by solar cell and PV module manufacturers and contribute to productivity improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲨鱼宝子发布了新的文献求助10
2秒前
Milou发布了新的文献求助10
2秒前
打工人不酷完成签到 ,获得积分10
4秒前
Yyyyyyyyy完成签到,获得积分20
5秒前
无花果应助跳跃的曼荷采纳,获得10
5秒前
圈哥完成签到 ,获得积分10
6秒前
6秒前
美满安青发布了新的文献求助10
6秒前
斯文败类应助内向宛凝采纳,获得10
6秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
852应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
科研通AI5应助SUZISHAN采纳,获得10
9秒前
勤劳怜寒应助Shate_Xiang采纳,获得20
9秒前
啊啊啊发布了新的文献求助10
10秒前
lql完成签到,获得积分10
10秒前
11秒前
ThanhHuy发布了新的文献求助10
12秒前
panpan完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
13秒前
gy79210发布了新的文献求助10
14秒前
樱桃糕完成签到,获得积分10
14秒前
有魅力书雪完成签到,获得积分10
14秒前
赘婿应助Yyyyyyyyy采纳,获得10
15秒前
16秒前
小樱发布了新的文献求助10
17秒前
panpan发布了新的文献求助10
18秒前
19秒前
MJ发布了新的文献求助10
24秒前
深味i完成签到,获得积分10
25秒前
啊七飞完成签到,获得积分10
25秒前
Owen应助hnhanzi采纳,获得10
28秒前
Myu完成签到,获得积分10
28秒前
gy79210发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
An account of the genus Dioscorea in the East, Part 2. The species which twine to the right 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4266665
求助须知:如何正确求助?哪些是违规求助? 3798535
关于积分的说明 11906996
捐赠科研通 3445035
什么是DOI,文献DOI怎么找? 1890096
邀请新用户注册赠送积分活动 940956
科研通“疑难数据库(出版商)”最低求助积分说明 845266